CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

INVESTIGATING THE RHEOLOGICAL AND PHYSICAL BEHAVIORS OF YOGURT DURING STORAGE

Ebrahim Ahmadi^{1⊠}, Hossein Barikloo¹, Rashid Gholami¹

¹Department of Biosystem Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran. [⊠]eahmadi@basu.ac.ir

https://doi.org/10.34302/crpjfst/2021.13.2.11

Article history:	ABSTRACT
Received,	As a popular fermented dairy product, yogurt enjoys a special status
29 August 2020	among the consumers and, therefore, its quality is the great interest.
Accepted,	Investigating the viscosity, physical properties and color of yogurt in the
1 April 2021	storage time are the necessary step for improving its quality. The aim of
Keywords:	this study is to explore the changes of L*and viscosity of yogurt with the
Viscosity;	changes of variables like temperature, loading speed, type of yogurt and
Backward extrusion test;	storage period. These tests have been performed by using of axial test to
Yogurt;	measured viscosity, as a new method, on two types of yogurts, low-fat
L*.	(1% fat) and high-fat (4.2% fat). The tests were performed at loading
	speeds of 40, 60 and 80 mm/min and temperatures of 4 and 25 °C. The
	backward extrusion axial test device and the cyclic method have been
	employed to determine the viscosity of yogurts. The variance analysis
	results related to the data of L*and yogurt viscosity became significant
	at a probability level of 1% for the main effects and some of interaction.
	By increasing the loading speed, a decreasing trend in viscosity was
	observed. Both yogurt types had a higher viscosity at the temperature of
	4 °C than at 25 °C. The storage period didn't have a steady and consistent
	influence on viscosity. The viscosity of high-fat yogurt was greater than
	the viscosity of low-fat yogurt at both temperatures of 4 and 25 °C