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 ABSTRACT 

In this investigation, an ohmic heating system was constructed and applied 

to the heating process at three voltage gradient inputs (8.33, 10.83, 13.33 V/ 

cm) and three percent weight loss sample (10, 20 and 30%) compared to 

total weight was selected. During the thermal process, the power 

consumption, electrical conductivity and coefficient performance system 

were calculated. All experiments were performed in three replications. An 

artificial neural network was used to predict experimental data.  In this study 

multi-layer perceptron were selected and radial basic function artificial 

neural network by 1 hidden layers and 4, 8 and 12 neurons hidden layers, 

and with two activation function (hyperbolic tangent and sigmoid). The 

highest R values were for power consumption (0.998), electrical 

conductivity (0.996) and Coefficient performance systems (0.999) in a MLP 

network with 8 neuron in hidden layer and sigmoid activation. Also the 

fastest network with lowest EPOCH was in a network of 12 neuron.  

According to the results obtained for R, MSE and learning cycle, it can be 

said that the neural network has ability to predict power consumption, 

electrical conductivity and coefficient performance systems to an acceptable 

level for ohmic processing. 
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1. Introduction  

Artificial neural network (ANN) seems very 

appropriate for the investigation and simulation 

of the data. ANN is, in fact, a collection of 

mathematical methods mostly including 

artificial intelligence and it attempts somehow to 

imitate human brain. During the past two 

decades, the neural network has exhibited a very 

high potential in a great many of the science and 

engineering areas for its exceptional 

performance, internal organization and self-

learning, overcoming the challenges and high 

solidity rate. Recently, there has come about an 

increase in the interests in utilizing neural 

networks as a modeling tool in agriculture and 

food industry technologies. Neural networks 

have been successfully employed in several 

foodstuff processing technologies such as 

drying, post-harvest technologies, rheology of 

the foodstuff, microbial predictions, 

fermentation and thermal processing (Lu et al., 

2010). Artificial neural networks are also 

considered as most effective tools for processing 

a large volume of information that was once a 
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big challenge in various respects. The 

development trend of the neural networks is 

suggestive of the importance of using them for 

information processing because they have been 

proved highly successful in data analysis and 

they have been capable of undergoing 

development in various grounds. Moreover, the 

use of neural networks is promising in food 

production and foodstuff quality processing and 

evaluation methods wherein old methods of data 

processing might not provide us with accurate 

information or be substantially costly. Two 

important abilities of neural networks, to wit 

prediction and classification scales, have drawn 

a large deal of attention. According to the 

internal competencies of the artificial neural 

networks, they can be successfully applied in 

agriculture sector (Hosu, Cristea, & Cimpoiu, 

2014). The artificial neural network is a topic 

discussed in artificial intelligence and it is an 

information processor trained using a 

percentage of input and output data and the 

system’s performance method is stored in its 

memory(Mazloumzadeh, Alavi, & Nouri, 

2008). Artificial neural networks are trained 

based on calculations on numerical data or 

examples. One feature of the neural networks is 

their ability in extracting the relationships 

between the inputs and outputs of a process with 

no need to complex environmental conditions. 

They are capable of connecting a 

multidimensional space to another space even if 

the information is imperfect and erroneous. 

These characteristics have made them 

appropriate for the problems related to the 

estimation and prediction in agriculture and 

industry and the neural network displays a good 

efficiency when the relations are nonlinear 

(Beale & Jackson, 1998; Menhaj, 2000). 

Moreover, the artificial neural network (ANN) 

modeling is widely used in many fields. This 

method is of high efficiency in solving the 

complex and non-linear equations in dryers 

(Özdemir, Aktaş, Şevik, & Khanlari, 2017). 

They also researcher used neural network in 

thermal processes: 

Mattar and et al (2004) on modeling thermal 

conductivity, specific heat, and density of milk 

with neural network reported that artificial 

neural networks presented a better prediction 

capability of specific heat, thermal conductivity, 

and density of milk than polynomial 

modeling(Mattar et al., 2004). 

Chegini et al. (2007) used predictive process 

and orange juice from artificial neural network, 

the results of which showed that the properly 

trained ANN model was able to produce 

simultaneously seven outputs, unlike traditional 

models where one mathematical model was 

required for each output. Radial Basis Function 

neural networks were not able well to learn the 

relationship between the input and output 

parameters. ANN parameters had a significant 

effect on learning ability of the ANN 

models(Chegini, Khazaei, Ghobadian, & 

Goudarzi, 2008). 

The objective of this research is the power 

consumption, electrical conductivity and 

Coefficient performance systems analyses of 

ohmic processing with three ohmic voltage 

gradient in order to reduce the weight loss sour 

orange with new processes. For this purpose, the 

ANN (multilayer perceptron and radial basic 

function) was applied to verify the accuracy of 

the numbers obtained. Additionally, the 

sensitivity coefficient test was applied to relate 

the power consumption, electrical conductivity 

and coefficient performance systems factors to 

voltage gradient and weight loss percentage. 

 

2. Materials and methods  

2.1 Preparation of the sample 

The oranges were purchased from a garden 

located in the city of Gorgan, Golestan province. 

The prepared oranges were washed and split into 

two halves in the middle and immediately after 

the purchase in the same condition for all 

samples (ambient temperature and applied 

uniform pressure), the manual removal was 

carried out. 
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2.2. Method of testing 

For this processing was considered one tank 

and the sample were poured into the ohmic tank 

and between the two electrodes, and their initial 

temperature was recorded after stability. After 

recording the temperature, the voltage was 

applied to the set and the samples were heated. 

Three heating gradients of 8.33, 10.83 and 

13.33V/cm were selected for the heating process 

and, using this voltage gradient, 10% (from 90 g 

to 81 g), 20% (from 90 g to 72 g) and 30% (from 

90 g to 63 g), the percentage of the total weight 

of the samples of sour orange discharged inside 

the cell is steamed during the heating process. 

All samples were weighed 90 g and the 

temperature of all specimens was 26 °C to 

initiate the heating process. In Figure 1, a 

schematic representation of the heating process 

and system components is shown. 

 

 

 
Figure 1. Schematic of equipment used for the ohmic heating process  

 

The experiments were carried out in a home-

based heating system. The system specifications 

used are shown in Table 1. All experiments were 

carried out at the department of bio systems 

mechanical engineering, Gorgan University of 

Agricultural Sciences and Natural Resources

 

Table 1. The system specifications 

Length  6 cm Distance electrode 6 cm 

Width 6 cm Power controller (3 kW, 0–300 V, 50 Hz, MST – 3, 

Toyo, Japan 

Height 3 cm Balance accuracy 0.01 g 

Thickness 0.3 cm Electrode Thickness 0. cm 

Electrode Steel   
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2.3. The equations of the heating process of 

ohmic 

Electrical conductivity was calculated using the 

resistivity of the samples within the cell 

geometry used in equation (1)(Castro, Teixeira, 

Salengke, Sastry, & Vicente, 2004)  ) Cappato 

et al., 2017( 

 

𝜎 = 𝑅
𝐿

𝐴
=

𝐿𝐼

𝐴𝑉
 (1) 

In this formula, σ = the electrical conductivity of 

the sample L: the distance between the two 

electrodes (m) from each other, A: the cross-

sectional area of the plates (m2), V: the input 

voltage (V), I: the input current (A) 

 

During the heating, the contact surface between 

the samples and the electrode decreases due to 

the vapor output, the contact surface can be 

calculated using the equation below.   ) Darvishi, 

Hosainpour, Nargesi, & Fadavi, 2015 ( :  

 

𝐴 =
𝑀𝑡

𝜌𝑡𝐿
 (2) 

 

𝜌𝑡 = 1340 − 3.26𝑀𝑡
2 (3) 

 

Humidity content at any moment Mt 

 

Power consumption was also calculated using 

formula 4)Kanjanapongkul, 2017): 

P=VI=I2R (4) 

 

In this equation, P is the power consumption 

(W)  

The energy given to the system in accordance 

with the relationship provided by icier and 

Hammers in 2005 is as follows (Srivastav & 

Roy, 2014) 

𝐸𝑔𝑖𝑣𝑒𝑛 = 𝐸𝑡𝑎𝑘𝑒𝑛 + 𝐸𝑙𝑜𝑠𝑠 

 
(5) 

∑(𝑉𝐼𝑡) = 𝑚𝑐𝑝(𝑇𝑓 − 𝑇𝑖) + 𝐸𝑙𝑜𝑠𝑠 

 

(6) 

The energy of the system is equal to the sum of 

the energy needed to increase the temperature of 

the cell, the energy dissipated to the 

environment through the displacement and the 

electrical energy converted to heat. In the above 

equations, the volatility value was determined 

and the amperes and time values were calculated 

by the software. The initial temperature and final 

temperature of the orange water were measured 

by a thermometer and the mass of water in the 

orange water was calculated by the balance. The 

system performance coefficient is given by the 

energy ratio taken by the system to the energy 

and calculated from the following 

equation)Darvishi, Khostaghaza, & Najafi, 

2013 (.  

 

𝑆𝑃𝐶 =
𝐸𝑡𝑎𝑘𝑒𝑛

𝐸𝑔𝑖𝑣𝑒𝑛
 

𝑆𝑃𝐶 =
𝑚𝑐𝑝(𝑇𝑓 − 𝑇𝑖)

∑(𝑉𝐼𝑡)
 

(7) 

In this formula, the energy given to system (j), Tf 

is the final temperature (C), Etaken energy taken 

from the system (j), Ti input temperature, Eloss, 

the energy lost in the system (j), t (s), SPC is the 

coefficient of performance system, m is the mass 

of the sample (kg). 
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2.4.Artificial Neural Network Modeling 

In this research, the artificial multilayer 

perceptron (MLP) and radial basic function 

(RBF) neural network were used for modeling 

the Investigating sour orange components 

during voltage and percent decrease mass 

different to predict electrical conductivity by 

one hidden layer and 4, 8, and 12 neurons using 

the Neuro-Solution 5 software. Hyperbolic 

tangent and sigmoid activation functions 

(Equation 3,4), which are the most common type 

of activation functions, were used in the in 

hidden input and output layer. In this paper, the 

Levenberg-Marquardt algorithm was used to 

learn the network(Taheri-Garavand, Karimi, 

Karimi, Lotfi, & Khoobbakht, 2018). 

Additionally, 70% of the data were used for 

training, 10% of them were used for network 

evaluation (Validating Data), and 20% of the 

data were used for testing the network (Testing 

data) (Table 3). The voltage, decreasing mass 

value, current input and ohmic time as network 

inputs and power consumption, electrical 

conductivity and Coefficient performance 

systems were the considered network outputs. 

Five repetitions were considered to achieve the 

minimum error rate and maximum network 

stability as a mean of 5000 Epoch for the 

network. Error was estimated using algorithm 

with back propagation error. Statistical 

parameters including, Root Mean Square Error 

(RMSE), R2, and Mean Absolute Error (MAE) 

were calculated for inputs and relationships 

were calculated using the formulas shown in 

Table 2. 

 

 

 

Table 2. Neural Network Relationships 

Reference 
Formula 

Number 
Formula 

(Soleimanzadeh, Hemati, 

Yolmeh, & Salehi, 2015) 

(8) 
Tanh =  

𝑒𝑥−𝑒−𝑥 

𝑒𝑥+𝑒−𝑥   

(F. Salehi, Gohari 

Ardabili, Nemati, & Latifi 

Darab, 2017) 

(9) 

Sig=
1

1+𝑒−𝑥  

(Azadbakht, Torshizi, & 

Ziaratban, 2016) 

(10) 

R2 = 1- 
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

(𝑃𝑖−𝑂)2  

(Fakhreddin Salehi & 

Razavi, 2012) 

(11) 

r =  √1 −
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

(𝑃𝑖−𝑂)2  

)B. Khoshnevisan, Sh. 

Rafiee, M. Omid, 2013( 

(12) 

RMSE = √∑
(𝑃𝑖−𝑂𝑖)2

𝑛
𝑛
𝑖=1  

(Azadbakht, Aghili, 

Ziaratban, & Vehedi 

Torshizi, 2017) 

(13) 

MAE =  
∑ |𝑃𝑖−𝑂𝑖|𝑛

𝑖=1

𝑛
 

 

 

 

 



Torshizi et al. /Carpathian Journal of Food Science and Technology 2019,11(3),15-27 

 
 

20  
 

Table 3. Optimization values for artificial neural network parameters 

Number of 

hidden layers 

Learning 

rule 

Type of activation 

function 

The 

number of 

hidden 

layer 

neurons 

Testing 

data % 

Validating 

data % 

Training 

data % 

1 
Levenberg 

Marquardt 

Hyperbolic tangent 

and sigmoid 
4 20% 10% 70% 

1 
Levenberg 

Marquardt 

Hyperbolic tangent 

and sigmoid 
8 20% 10% 70% 

1 
Levenberg 

Marquardt 

Hyperbolic tangent 

and sigmoid 
12 20% 10% 70% 

 

 

3. Results and discussions  

For to predict power consumption, electrical 

conductivity and coefficient performance 

systems, MLP and RBF neural network model 

were used. As lower error value was obtained by 

using the hyperbolic tangent and sigmoid 

activation function, this type of function was 

selected as the activation function in the hidden 

layer and the output. Based on the test method, 

70% of the data were used for training and the 

network could learn the relationships between 

inputs and outputs well and 20 % of the data 

were used to test the network and 10 % of the 

data were used to Cross Validation network. The 

value of Mean squared error, Normalized Mean 

squared error, Mean absolute error, Correlation 

coefficient are shown Table 4.The results 

showed that best neural network for 4 neurons in 

the hidden layer was in tangent hyperbolic 

activation function and MLP network for  power 

consumption (R = 0.991-MSE=91.419), and for 

Coefficient performance systems (R= 0.9832 -

0.0003) and best value for electrical 

conductivity  (R = 0.9164 – MSE=0.0072) was 

in RBF network with tangent hyperbolic and 

sigmoid. Also for neural network with 8 neurons 

in hidden layer, Sigmoid activation function and 

MLP network  have best amount for power 

consumption (R = 0.99832-MSE=3.5E+1), 

electrical conductivity  (R = 0.9963 – 

MSE=3.1E-4) and Coefficient performance 

systems (R= 0.99963 -7.8E-5). In neural 

network with 12 neuron in hidden layer were 

best amount R=0.9996, 0.9782, 0.999 for power 

consumption, electrical conductivity and 

coefficient performance systems in tangent 

hyperbolic, respectively and best amount for 

MSE were 18.800, 0.00089, 0.00001 

respectability in MLP network and tangent 

hyperbolic tangent activation function. In total 

MLP network with 8 neuron in hidden layer and 

sigmoid activation function have best amount R 

and MSE for power consumption, electrical 

conductivity and coefficient performance 

systems. The results showed in table 4. 

According to MSE and R value, network 8 

neuron in hidden layer was best network for 

predication power consumption, electrical 

conductivity  and Coefficient performance 

systems value, because this network has lowest 

MSE and highest R.  Table 5 shows the best 

network between input data and the data 

simulated by the network for each of the neurons 

in the hidden layer. Smaller epochs suggest that 

the number of neurons in the layer successfully 

learned by the neural network compared to other 

neurons. As shown in table 5, the fastest learning 

speed network for predicting data with sigmoid 

activation function and tangent hyperbolic were 

in network by 12 neuron in hidden layer and 

RBF network by 795 and 115 EPOCH and RUN 

1 for training, respectability. Also according to 

result in table 5 all network created by RBF has 

Lowest EPOCH than MLP network. But 

according to result in table 4, lowest MSE and R 

was in MLP network, sigmoid and tangent 
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hyperbolic activation in 8 and 12 neuron in 

hidden layer respectively, so the best EPOCH 

and RUN are 1093-1 for 8 neuron in hidden 

layer and 795-1for 12 neuron in hidden layer. In 

total speed training for tangent activation 

function is highest than sigmoid activation 

function. Also result for cross validation showed 

in table 4 for data experiment. The results of the 

sensitivity analysis for power consumption, 

electrical conductivity and Coefficient 

performance systems are shown in Figure 2, 3, 

4. Based on this figures, the highest sensitivity 

for training data were obtained for the Voltage 

gradin and weight loss percentage in the hidden 

layers with 8 neurons and sigmoid activation in 

MLP network and highest sensitivity process 

time and input current for electrical conductivity 

and Coefficient performance systems were in 

hidden layer 8 , 12 and hyperbolic tangent , 

sigmoid activitaion function and RBF , MLP, 

respectivity. overall, the voltage gradient 

sensitivity was higher than the other three 

inputs, meaning the voltage had a greater effect 

on power consumption, electrical conductivity 

and Coefficient performance systems. Also, the 

sensitivity coefficient of the process time and the 

input current are exactly the same for power 

consumption, electrical conductivity and 

Coefficient performance systems.    

 

 

 

Table 5. Some of the best MLP and RBF neural network topologies to predict test value 
  Sigmoid 

  4 8 12 

  RBF MLP RBF MLP RBF MLP 

EPOCH 
Training 1934 4407 1093 4377 695 795 

Cross Validation 10 11 73 215 5 7 

RUN 
Training 1 5 1 1 1 1 

Cross Validation 5 5 3 1 1 4 

  Tangent hyperbolic 

  4 8 12 

  RBF MLP RBF MLP RBF MLP 

EPOCH 
Training 500 5000 457 4999 115 157 

Cross Validation 7 15 6 25 21 32 

RUN 
Training 1 4 1 1 1 1 

Cross Validation 3 4 2 3 4 3 
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Table 4. Error values in predicting experimental data using optimal artificial neural network 

  Power consumption 

  MSE NMSE MAE R 

  4 8 12 4 8 12 4 8 12 4 8 12 

MLP 
S 473.2174 3.5E+01 481.45 0.0978 

8.2E-

03 0.1019 16.1328 4.7526 14.97 0.9815 0.99832 0.9534 

RBF 413.43 309.14 580.65 0.0845 0.0639 0.863 17.24 10.37 29.65 0.9636 0.9690 0.91236 

MLP 
T 

91.419 78.30 18.800 0.019 0.02 0.00649 6.636 4.84 2.519 0.991 0.99288 0.99683 

RBF 388.5924 107.7434 279.28 0.0855 0.0370 0.0812 16.2073 7.3861 14.01 0.9655 0.9827 0.9822 

  Electrical conductivity  

MLP 
S 0.0077 3.1E-04 0.0116 0.1937 

1.1E-

02 0.3808 0.0696 0.0117 0.0762 0.9157 0.99633 0.8215 

RBF 0.0130 0.0050 0.0793 0.3323 0.1222 0.456 0.0838 0.0579 0.156 0.8258 0.9465 0.7936 

MLP 
T 

0.009 0.0036 0.00089 0.227 0.10 0.04368 0.076 0.04 0.01512 0.883 0.94909 0.97824 

RBF 0.0072 0.0059 0.0864 0.1911 0.2098 4.7372 0.0670 0.0589 0.2582 0.9164 0.9088 0.5661 

  Coefficient performance systems 

MLP 
S 0.0004 7.8E-05 0.00044 0.0403 

7.7E-

03 0.04714 0.0144 0.0059 0.01632 0.9799 0.999750 0.97813 

RBF 0.0003 0.0001 0.00245 0.0357 0.0133 0.089 0.0143 0.0093 0.0296 0.9832 0.9936 0.9336 

MLP 
T 

0.001 0.0002 0.00001 0.060 0.04 0.00077 0.020 0.01 0.00187 0.973 0.98228 0.99963 

RBF 0.0010 0.0003 0.0008 0.1229 0.0314 0.0822 0.0265 0.0122 0.0228 0.9375 0.9851 0.9916 
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Figure 2. Sensitivity coefficient power consumption 
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Figure 3. Sensitivity coefficient conductive electrical 
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Figure 4. Sensitivity coefficient, coefficient performance systems
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4.Conclusion 

For power consumption, electrical 

conductivity and performance system, the best R 

value in the MLP network with 8 neurons in the 

hidden layer was the sigmoid activation 

function, But for power consumption and 

system efficiency, Sigmoid activation functions 

and tangent have been able to show R values in 

RBF and MLP networks, These values were 

good for all three numbers of input neurons for 

the network. But for electrical conductivity, the 

network with 12 neurons, and especially the 

RBF network, has not shown satisfactory 

results. 

For power consumption, electrical 

conductivity and performance system were the 

lowest MSE in a network of 8 neurons, The 

MSE values for both the hyperbolic and sigmoid 

tangency activation function were lower for both 

the MLP and RBF networks than for the two 

networks with 4 and 12 neurons, which suggests 

a better formation of the network with 8 neurons. 

 According to the results of the network 

learning speed, as the number of neurons in the 

hidden layer has increased, the speed of network 

learning has increased to simulate data, and the 

fastest network with lowest EPOCH was in a 

network of 12 neuron. Also, the hyperbolic 

tangent activation function has a faster speed in 

network training than sigmoid activation 

function. 

 The sensitivity coefficient for the Voltage 

gradient relative to the other parameters of the 

network input has a greater effect on the power 

consumption, the electrical conductivity 

coefficient, and the coefficient performance of 

the system. 
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