

CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

Journal home page: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

IMPACT OF FREEZING AND DRYING PREPROCESSING ON PIGMENTS EXTRACTION FROM THE BROWN SEAWEED« *PHYLLARIA RENIFORMIS*» COLLECTED IN ALGERIAN COAST

Nora Ghaliaoui^{1, 2, 3 ⊠}, Hind Mokrane³, Mohammed Hazzit¹, Mohammed Hadjadj², Fayçel Said Otmani², Souad Touati², Halima Seridi⁴

¹Department de Technologie Alimentaire et Nutrition Humaine, Ecole Nationale Supérieure d'Agronomie, El-Harrach (ENSA), Algiers, Algeria.

²Centre de Recherche Scientifique et technique en Analyses Physico-Chimiques (CRAPC), Tipaza, Algeria.

³Laboratoire de Recherche sur les Produits Bioactifs et Valorisation de la Biomasse, Département de Chimie, Ecole Normale Supérieure de Kouba, Algiers, Algeria. ⁴Laboratoire d'Océanographie Biologique et Environnement Marin, Université des sciences et

de la technologie Houari Boumediene, (USTHB), BP 32 Al Alia, Bab Ezzouar, Algiers, Algeria.

[™]noragh50@yahoo.com

https://doi.org/10.34302/crpjfst/2020.12.3.6

Article history:	ABSTRACT
Received:	Seaweeds are an excellent source of natural pigments such as chlorophylls
5 January 2019	and carotenoids that exhibit several bioactive properties fully exploited in
Accepted:	food and health products. Due to the high sensitivity and the rapid
15 August 2020	degradation of pigments, recent researches are now focusing on
Keywords:	development of efficient techniques for their extraction, while the sample
Preprocessing	preprocessing as the main important step attracted less attention. The
Freezing	objective of this study was the evaluation of the effect of freezing and
Drying	drying preprocessing on pigments quantity, quality and antioxidant activity
Phyllaria reniformis	of the brown seaweed Phyllaria reniformis. Pigments were quantified
Pigments	using UV-Visible spectrophotometry and fully characterized by reverse
	phase high performance liquid chromatography (RP-HPLC). Phyllaria
	reniformis was characterized by a high amount of pigments especially
	fucoxanthin. Based on UV-visible spectrophotometry results, alga
	preprocessing before extraction showed a high variability on pigments
	content. As shown by RP-HPLC freezing preprocessing exhibited the most
	efficient pigment extraction in term of quantity. While, drying
	preprocessing demonstrated higher amount of β -carotene and pheophytin <i>a</i> .
	The highest and most efficient antioxidant activities were obtained in the
	frozen samples. The quality, quantity and antioxidant activities of <i>Phyllaria</i>
	reniformis pigments extract was found to be deeply related to the

preprocessing step.