

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

NUTRIENT COMPOSITION, FUNCTIONAL, PHYSICAL AND PASTING PROPERTIES OF YELLOW YAM (*Dioscorea cayenensis*) AND JACK BEAN (*Canavalia ensiformis*) FLOUR BLENDS

Emmanuel Kehinde Oke^{1⊠}, Michael Ayodele Idowu¹, Olajide Philip Sobukola¹ and H. Adegoke Bakare²

¹Department of Food Science and Technology, P.M.B 2240, Federal University of Agriculture, Abeokuta, Nigeria

²Department of Hospitality and Tourism, Federal University of Agriculture Abeokuta, Nigeria ²Rennyoke35@gmail.com

https://	/doi.or	<u>z/</u>	<u>'10.3</u>	430.	<u>2/</u>	crpjf	<u>st/</u>	<u>202</u>	20.12.5.4	4

Article history:	Abstract
Received:	The study therefore focused on the nutrient composition, functional,
28 August 2020	physical and pasting properties of yellow yam and jack bean flour blends.
Accepted:	Yellow yam tubers and jack bean seed were processed into flour, blended
25 December 2020	together and D-optimal mixture design was used to generate the percentage
Keywords:	of yellow yam and jack bean flour resulting to a total of nine experimental
Yellow yam flour;	runs. The flour blends were analyzed for nutrient composition, functional,
Jack bean flour;	physical and pasting properties using standard methods. Data obtained were
Nutrient composition.	subjected to statistical analysis. Means, analysis of variance were
	determined using SPSS version 21.0 and the difference between the mean
	values were evaluated at p<0.05 using Duncan multiple range test. The effect
	of optimization procedure was investigated using Design expert version
	(8.0). Crude protein, total carotenoids, starch, amylose and amylopectin
	ranged from 9.97 to 16.72%, 5.24 to $6.65\mu g/g$, 79.38 to 80.07%, 25.36 to 20.88% $\sim 170.12 \pm 74.65\%$
	29.88% and 70.13 to 74.65% respectively. Addition of yellow yam and jack here flow had no cignificant $(n \ge 0.05)$ effect on the entirultitized
	bean flour had no significant $(p>0.05)$ effect on the antinutritional composition (saponin, trypsin inhibitor and total polyphenol). Range of
	values for bulk density, dispersibility, water absorption capacity, swelling
	power and solubility index ranged from 0.62 to 0.73g/ml, 75.5 to 80.4%,
	4.19 to $6.54g/g$, 4.52 to $5.70g/g$ and 6.53 to 6.77% respectively. The
	yellowness (b*) of yellow yam and jack bean flour blend were not
	significantly ($p>0.05$) affected while the peak viscosity, breakdown
	viscosity, final viscosity and setback value ranged from 206.0 to 572.0RVU,
	5.0 to 17.0RVU, 263.0 to 9.11.0RVU and 279.0 to 372.0RVU respectively.
	The flour blends were optimized with respect to crude protein, total
	carotenoid, starch content, amylose, amylopectin, dispersibility, water
	absorption capacity, swelling power, solubility index, peak viscosity, break
	down viscosity and yellowness were maximized while bulk density, final
	viscosity and setback values were minimize. The optimum flour blend ratio
	was 94.11% yellow yam and 5.89% jack bean flour.