CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

OPTIMIZATION OF SPRAY-DRYING PARAMETERS FOR 'BINTANGOR' ORANGE (CITRUS RETICULATA BLANCO X CITRUS AURANTIUM L.) JUICE

Yu, L.M.¹ and Pui, L.P.^{1⊠}

¹Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia.

[™]puilp@ucsiuniversity.edu.my

https://doi.org/10.34302/crpjfst/2021.13.1.13

Article history:	ABSTRACT
Received:	'Bintangor' orange is a type of mandarin-orange hybrid, that has
27 April 2020	orange-colored pulp, but green-colored peel. The objective of this study was
Accepted:	to determine the effects of maltodextrin concentrations (5% w/w to 25%
25 February 2021	w/w) and inlet temperatures (140°C to 180°C) on the properties of spray-
Keywords:	dried 'Bintangor' orange powder. Color, moisture content, hygroscopicity,
Spray-drying;	bulk density and wettability of powder were analyzed. Also, 'Bintangor'
Orange;	orange juice and the reconstituted powder were compared in color, viscosity,
Maltodextrin;	total soluble solids (TSS), and pH value. When 'Bintangor' orange juice was
Inlet temperature;	spray-dried with different maltodextrin concentrations, moisture content,
Physicochemical	color, hygroscopicity, bulk density and wettability increases as the
properties.	maltodextrin concentration increase. On the other hand, there was no significant difference $(p>0.05)$ in the color, moisture content, and
	hygroscopicity of spray-dried 'Bintangor' orange powder produced at
	different inlet temperatures, except bulk density. Optimum inlet temperature
	(170°C) and optimum maltodextrin concentration (20% w/w) produced
	powder with 0.11±0.00 water activity and 20.02±1.00 g/ 100 g
	hygroscopicity. When comparing reconstituted optimized powder with
	'Bintangor' orange juice, the color, viscosity, TSS, and pH value of
	'Bintangor' orange juice were higher than the optimized reconstituted
	powder. 'Bintangor' orange powder produced have 2.21±1.91% fat, and
	$2.44\pm0.00\%$ protein.