CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

EFFECT OF CASEIN EDIBLE COATING ON THE POSTHARVEST QUALITY OF FRESH GUAVA FRUITS DURING AMBIENT STORAGE CONDITIONS

Annem Muniraj Beulah¹, Kumaram Venkata Sucharitha^{1⊠}, Sanaboyina Dheeraj¹, Palagiri Prameela¹

¹Food technology division, Department of Home science, College of Sciences Sri Venkateswara University, Tirupati, Andhra Pradesh-517502, India.

[™]suchivenkata@gmail.com

https://doi.org/10.34302/crpjfst/2021.13.2.1

Article history:	ABSTRACT
Received:	Maintaining quality of fruits is an important task in fresh food retailing
28 September 2020	throughout the supply chain. Fruits fall under perishable foods because they
Accepted:	quickly respond to chemical, physical, and biological changes which lead to
25 February 2021	quality aspects. Edible coatings are used to prevent the physicochemical
Keywords:	changes in fruits during the storage and transportation. In the present study,
Casein;	Casein was chosen as a bio-based edible coating material, enriched with
Edible coating;	ascorbic acid and was applied on fresh guava fruits to study the delay of
Fortification;	ripening and other quality properties. Different concentrations of casein
Guava fruits;	were fortified with 1% of ascorbic acid and applied on whole guava fruits as
Shelf-life.	coating. Fruits were treated with 5% and 10% casein with and without
	ascorbic acid, fortification process was established to maintain and enrich
	the vitamin C content in the fruits to reach maximum levels to the
	consumers. Experimental samples were coded as S1, S2, S3, S4 and sample
	(So) without coating is considered as control. The fruit samples were stored
	at $(26\pm1^{\circ}C)$ for a period of 16 days. Various physicochemical, biological
	parameters and microstructural studies were tested to evaluate freshness,
	nutritional status, and keeping quality during the storage. Fruit ripening,
	firmness and various visual quality aspects like appearance, defects, and
	shrinkage rates were studied to understand the physical quality of the fruits
	upon storage period. During storage, results shows that all casein treated
	samples were noted with decreased firmness, titratable acidity and delayed
	chlorophyll content, microbial load while the pH. TSS, carotenoids were
	increased along the storage when compared with control sample and all the
	coated samples were found glossy appearance with acceptable flavor. This
	study prompt that casein is an ideal promising coating to preserve the
	quality and extends the post-harvest life of guaya fruits
	quanty and extends the post harvest the of guava nurs.