

111 .

journal homepage: http://chimie-biologie.ubm.ro/carpathian journal/index.html

VALORIZATION of HAZELNUT and SESAME PROTEIN ISOLATES in SUSTAINABLE MEATBALL MANUFACTURE

Harun Sami Ciftci¹ and İbrahim Gülseren^{2,3⊠}

¹İstanbul Sabahattin Zaim University, Technology Transfer Office (TTO), 34303, Halkalı – Küçükçekmece, İstanbul, TURKEY

² Department of Food Engineering, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University (IZU), 34303, Halkalı – Küçükçekmece, İstanbul, TURKEY ³ IZU Food and Agricultural Research Center (GTAUM), Halkalı Campus, 34303,

Küçükçekmece, İstanbul, TURKEY

[™]ibrahim.gulseren@izu.edu.tr

Article history:	ABSTRACT
Received:	The ever-increasing global demand for proteins necessitates the generation of
13 August 2021	sustainable plant protein products. The aim of the current study is the utilization of
Accepted:	cold press cakes for the generation of hazelnut and sesame protein isolates and their
14 September 2021	valorization in meatball manufacture. Protein isolates were generated from cold press
Keywords:	cakes using an alkaline extraction-isoelectric precipitation (AE-IP) method. The
Cold press cakes;	functional properties (solubility, emulsion and foam formation capacity, and oil and
Hazelnuts;	water holding capacity) of hazelnut and sesame protein isolates were examined.
Sesame;	Furthermore, physicochemical and sensory properties (texture, size, color, and
Meatballs;	sensory attributes) of the meatball samples fortified by these isolates were
Sustainability.	investigated. Protein fortification altered color of the meatballs and increased the
-	firmness of meatballs at elevated protein contents. However, toughness or meatball
	size were unaffected by fortification. The differences between treatments were
	attributed to the molecular size characteristics of proteins and fiber content in the
	isolates. Sensory data confirmed that the acceptance for meatballs were maximum
	for samples fortified with 5% protein and sesame protein isolate was more preferable
	over hazelnut counterparts. Since commercial meatballs contain approx.20% protein,
	\geq 5% plant protein fortification could be a significant development in protein content
	and sustainability in meatball production