journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

RESPONSE OF SECONDARY STRUCTURAL COMPONENTS OF EGG WHITE PROTEINS TO COLD AND THERMAL EXTREMITIES IN WATER/DEUTERIUM OXIDE MIXTURES

İsmail Hakki Tekiner^{1,2,3⊠}, Anke Knoblauch³, Alexandru Sover⁴, Philipp Häfner⁴, Nadja Muschler³, Marwa Tainsa⁵

¹Food Engineering Department, Istanbul Sabahattin Zaim University, 34303 Istanbul, Turkey
² Nutrition and Dietetics Department, Istanbul Sabahattin Zaim University, 34303 Istanbul, Turkey
³ Industrial Biotechnology Department, Ansbach University of Applied Sciences, 91510 Ansbach, Germany
⁴ Applied Polymer Technology Department, Ansbach University of Applied Sciences, 91510 Ansbach Germany
⁵ Department of Agroalimentary, Saad Dahleb University, BP-270 Blida, Algeria

[∞] ismail.tekiner@izu.edu.tr

https://doi.org/10.34302/crpjfst/2024.16.1.16

Article history:

Received: May 16th, 2023 Accepted: January 12th, 2024

Keywords:

Protein; Stability; Denaturation;

Cold; Thermal.

ABSTRACT

Temperature and water influence proteins' stability and function. This study investigated the response of Amid I secondary structural components (SSC) of egg white proteins to cold (-80 °C) and thermal (100 °C) extremities in water and deuterium oxide (D₂O) mixtures by using FT-IR, DSC, and SEM analyses. Notably, D₂O enabled SSCs exhibit similar profiles at temperature extremities. Latent heat of melting (ΔH_m) raised by 9.5% at 100 °C, while it lowered by 106.8% at -80 °C. Heat capacity (C) increased by 0.9% and 42.2% at 100 and -80 °C, whereas melting temperature (T_m) decreased by 1.7% and 80.5% at 100 and -80 °C. SEM imaging showed flaky structures with different shapes, dimensions, and fissures. Statistical evaluation indicated that there was a strong positive correlation among SSC (p=0.0001), ΔH_m (p=0.00008), and C (p=0.00001) changes, except for T_m values (p=.558182). Overall, D₂O contributed to protein stability at 100 and -80 °C by controlling the unfolding process, possibly by an enthalpydependent mechanism. Therefore, it can be used as a reference solvent to establish kinetic models with/without enzymatic, physical, or chemical approaches for improved protein stability.