journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

PRODUCTION AND CHARACTERIZATION OF 'SEKAKI' PAPAYA FRUIT PUREE AND POWDER

Kean Weng Saw¹ and Liew Phing Pui¹⊠

¹Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia.

[™]puilp@ucsiuniversity.edu.my

https://doi.org/10.34302/crpjfst/2021.13.2.13

Article history:

Received,

12 December 2020

Accepted,

5 April 2021

Keywords:

Inlet Temperature; Spray-drying; Papaya; Pectinase; Enzyme;

Physico-chemical.

ABSTRACT

This study was conducted to optimize enzyme liquefaction of papaya fruit using Pectinex Ultra SP-L, followed by spray-drying the liquefied puree into powder. Pectinex® Ultra SP-L was applied at different concentrations (0.5 -2.5% v/w) and incubation time (0.5 - 2.0 hours). The puree after enzyme liquefaction was spray-dried with different temperatures of 160- 200°C). Results showed that papaya puree treated with Pectinex® Ultra SP-L at 1.0% (v/w) with an incubation time of 2 hours gave the lowest viscosity (6510.10 \pm 1616.37 cps), TSS value at 10.09 \pm 0.68 °Brix, pH value at 4.42 \pm 0.19 and color value of L*= 33.83 ± 1.61 , a*= 33.75 ± 1.18 and b*= 44.37 ± 0.86 . Spray-drying at 160°C inlet temperature yielded powder with good properties: moisture content at $5.45 \pm 0.07\%$, water activity at 0.15 ± 0.004 Aw, hygroscopicity at 17.90 \pm 1.34%, and color values L*=92.39 \pm 0.01, $a*=4.44 \pm 0.001$ and $b*=12.27 \pm 0.01$. For proximate analysis, spray-dried papaya powder had the lowest ash content, fat content, protein content, and no fiber was detected in spray-dried papaya powder. The pH of the reconstituted powder was lower compared to the optimized puree, and the color was darker and yellow compared to the optimized puree.