CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

ASSESSMENT OF PHYSICAL, FRICTIONAL AND AERODYNAMIC PROPERTIES OF CHAROLI (*Buchanania Lanzan Spreng*) NUT AS POTENTIALS FOR DEVELOPMENT OF PROCESSING MACHINES

Sagar Shelare^{1⊠}, Ravinder Kumar² and Pravin Khope³

¹School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, India. ²School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, India. ³Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, Maharashtra, India. [™]sagmech24@gmail.com

https://doi.org/10.34302/crpjfst/2021.13.2.16

Article history:	ABSTRACT
Received,	Charoli (BuchananialanzanSpreng) has a sustainable economic potential
10October2020	due to its nutritional and medicinal values. The moisture dependent physical,
Accepted,	frictional, and aerodynamic properties play a key role while processing food
1 April 2021	and designing a processing machine. This study determined various
Keywords:	physical, frictional, and aerodynamic properties of Charoli
Physical properties;	(BuchananialanzanSpreng) nut at increasing moisture content, and the
Moisture dependent	importance of processing, machine designing were discussed. Different
properties;	properties of Charoli nut were examined at 9.06, 10.92, 12.51, 15.29, and
Aerodynamic properties;	17.86 % (d.b) moisture content. Various axial dimensions as length, width,
Coefficient of friction;	and thickness revealed a linear increment by nut moisture content. The value
Angle of repose.	of true and bulk density reduced as of 657.23 to 578.32 kg m ⁻³ and 917.94
	to 851.21 kg m ⁻³ , respectively, while sphericity and porosity increased from
	86.42 to 88.64 %, and 28.40 to 32.06 %, respectively. The coefficient of
	static friction increases linearly and found highest for rubber. The value of
	static and dynamic angle of repose increased significantly as of 16.52° to
	22.31° and 27.91° to 33.23° respectively. Also, the linear increment was
	noted in terminal velocity from 13.21 to 14.94 m/s by increasing moisture
	content. Data obtained by this study will be very much helpful for the
	development of novel equipment, which will be valuable for operations like
	separation, grading, cleaning, sorting, deshelling, packaging, and storage
	structures for Charoli (BuchananialanzanSpreng) nut.