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 ABSTRACT 

This investigation uses the artificial neural network model to classify the 

energy and exergy of the kiwi drying process in a microwave dryer. In this 

experiment, classification was carried out separately for various pre-

treatments and microwave powers using three pretreatments (oven, ohmic, 

and control treatments) and microwave power values (360, 600, and 900W), 

and the artificial neural network model. Classification was done using 5 

different input data groups.  The first group included the overall data (energy 

efficiency, special energy loss, exergy efficiency, and exergy loss), while the 

second to fifth groups included the data on the exergy efficiency, special 

energy loss, energy efficiency and special exergy loss in the order 

mentioned, which served as the classification inputs. Considering the results, 

the best R and Percent Correct values for the oven (Percent Correct=90 – 

R=0.709) and ohmic (Percent Correct=83.33– R=0.846) pretreatments were 

obtained. The values of this parameters were also calculated for the control 

(Percent Correct=71.43 – R=0.843), the 360W power (Percent 

Correct=92.86 – R=0.9975), the 600W power (Percent Correct=100 – 

R=0.9124), and the 900W power (Percent Correct=100 – R=0.9685). The 

overall data was used in the classification phase. In addition, the maximum 

correctly detected data for the oven, ohmic, and pretreatment was 18 (20 

items), 15 (18 items), and 5 (7 items), respectively. The maximum correctly 

detected data for the 360W power, 600W power, and 900W power levels 

was 13 (14 items), 15 (15 items), and 16 (16 items), respectively. In sum, 

the neural network using the overall data input displayed acceptable 

efficiency in classifying the energy and exergy data of the kiwi drying 

process in microwave dryers 
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1. Introduction  

Artificial neural networks (ANNs) have 

been widely used in different fields of 

agriculture like economic, energy and 

environmental modeling as well as to extend the 

field of statistical methods, in the Last few 

decades. A big advantage of ANNs over 

statistical methods is that they require no 

assumptions about the form of a fitting function. 

Instead, the network is trained with experimental 

data to find the relationship; so they are 

becoming very popular estimating tools and are 
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known to be efficient and less time-consuming 

in modeling of complex systems compared to 

other mathematical models such as 

regression(B. Khoshnevisan, Sh. Rafiee, M. 

Omid 2013)  The concept of Artificial Neural 

Networks (ANN) was developed about fifty 

years ago, but it has been used for practical 

applications for approximately the last twenty 

years. Artificial Neural Networks are one of the 

two major fields of Artificial Intelligence (AI) 

with the other one being Expert Systems. ANN 

try to mimic the human brain learning process 

and are able to learn key information patterns in 

a multidimensional information domain 

(Mavromatidis et al. 2013).  Artificial Neural 

Network (ANN) models are developed for each 

system to provide the energy baseline, which is 

modelled as a dependency between the energy 

consumption and suitable explanatory variables. 

The tool has two diagnostic levels.  The first 

level broadly evaluates the systems 

performance, in terms of energy consumption, 

while the second level applies more rigorous 

criteria for fault detection of supermarket 

subsystem(Mavromatidis et al. 2013).  Neural 

networks have become ubiquitous in 

applications ranging from computer vision to 

speech recognition and natural language 

processing. While these large neural networks 

are very powerful, their size consumes 

considerable storage, memory bandwidth, and 

computational resources (Han et al. 2015).  

The classification problem is the problem of 

assigning an object into one of predefined 

classes based on a number of features or 

attributes extracted from the object. In machine 

learning, classification is categorized as a 

supervised learning method. A classifier is 

constructed based on a training set with known 

class labels(Siswantoro et al. 2016). A well 

trained network learns from the pre-seen 

experimental dataset (training data) and 

generalizes this learning beyond to the unseen 

data which is called ‘prediction’. Furthermore, 

artificial neural networks (ANNs) are able to 

model non-linear behaviors and complex 

processes. This is highly important considering 

the drying applications in which the nature is 

seriously non-linear and simple modeling 

methods fail. Although ANN methods are 

frequently reported on drying fruits and 

vegetables (Nazghelichi et al. 2011, Nikbakht et 

al. 2014). Artificial neural networks have been 

used in the past years for modeling many 

processes in food engineering. Behroozi 

Khazaeia et al. (2013) used neural networks to 9 

model and control the drying process of 

grapes(Behroozi Khazaei et al. 2013). 

Aghbashlo et al. (2012) used artificial neural 

networks to predict exergetic performance of the 

spray drying process for fish oil and skimmed 

milk powder(Aghbashlo et al. 2012). 

Kerdpiboon et al. (2006) used artificial neural 

network analysis to predict shrinkage and 

rehydration of dried carrots(Kerdpiboon et al. 

2006). Hernández-Pérez et al. (2004) proposed a 

predictive model for heat and mass transfer 

using artificial neural networks to obtain on-line 

prediction of temperature and moisture kinetics 

during the drying of cassava and 

mango(Hernández-Pérez et al. 2004)(Guiné et 

al. 2015).The purpose of this investigation was 

to classify the amount of energy and exergy of 

the microwave dryer for the input of the grid 

with different potentials and pretreatment 

(ohmic, oven, and control samples) using the 

neural network, And is artificial neural network 

able to detect the amount of energy and 

extrusion for pre-treated and unprocessed 

products?. Also The sensitivity coefficient of the 

data was also analyzed using the neural network 

to determine which network the input was most 

sensitive to classification. 

 

2. Materials and methods  

2.1. Sample preparation  

Newly-harvested kiwi fruit were purchased 

from the local store in Gorgan city of Iran, and 

were kept in the laboratory at 10 ° C. At the 

beginning of each experiment, the kiwi was 

washed and the slices were cut in circular in a 

thickness of 5 mm and they were weighted. 

Then, samples were placed in an oven with 

Temperature at 100 ° C for 3, 5 and 7 min to be 
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pretreated. Also samples were placed in an 

ohmic heating with voltage 80 for 3, 5 and 7 min 

to be pretreated. Drying process was performed 

in a microwave dryer in the Bio System 

Mechanics Department of Gorgan University of 

Agricultural Sciences and Natural Resources 

Figure 1.

 

 

 
Figure 1. Diagram of microwave drying system 

 

 
Figure 2. Volume control of microwave system 

 

2.2. Experiment method  

Slices were pretreated and placed in 

containers and dried at three powers of 360, 600 

and 900 W. The weight of kiwi was measured 

using a 0.01 mg precision scale. The weight of 

each sample was measured and recorded at a 

time interval of 1 minute to reach constant 

moisture. For each of the treatments, the 

experiments were repeated three times. The 

experiment was conducted at a temperature of 

20 ° C and relative humidity of 79%. The 

moisture content of kiwi was also calculated 

using equation (1) (Yogendrasasidhar & Pydi 

Setty 2018). 
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𝑀𝐶 =
𝑊 − 𝑊e

𝑊
 

    (𝟏) 

 

2.3. Energy analysis  
The mass and energy survival in the 

microwave dryers' chamber is shown in Figure 

2. The general relation of mass moisture survival 

is calculated using Equation (2) (Darvishi et al. 

2016).  

 

(2) ∑ 𝑚𝑖𝑛 =  ∑ 𝑚𝑜𝑢𝑡 

According to Equation 3, the initial mass of 

the sample is equal to the amount of water vapor 

removed and the rate of dried sample mass. 

 

(3) 𝑚𝑜 = 𝑚𝑒𝑤 + 𝑚𝑝 

    

The mass of evaporated water is obtained 

using Equation 4 (Darvishi et al. 2014).   

(4) 𝑚𝑤𝑡 = 𝑚𝑑(𝑀0 − 𝑀𝑡) 

 

The protected energy of the sensible heat, 

latent heat, and the thermal source of the 

microwave were calculated using Equation 5 

and the input energy of the dryer was calculated 

using Equation 6 (Jindarat et al. 2011). In 

equation 5, the lost energy is𝑃𝑟𝑒𝑓 + 𝑃𝑡𝑟𝑎. 

Equation 6 shows the amount of input energy of 

the microwave. This formula is composed of 

three parts, including absorbed energy, reflected 

energy, and passed energy. In equation (6) 

equals to the absorbed energy of product. 

𝑃𝑖𝑛 = 𝑃𝑎𝑏𝑠 + 𝑃𝑟𝑒𝑓 + 𝑃𝑡𝑟𝑎         (5) 

 

Pin  × t = ((mCpT)
dp

− (mCpT)
wp

) +

𝜆𝐾𝑚𝑤 +  𝐸𝑟𝑒𝑓 + 𝐸𝑡𝑟𝑎       (6) 

 

 

The latent heat of the kiwi samples is 

calculated using Equation 7 (Abdelmotaleb et al. 

2009). 

(7) 
𝜆𝐾

𝜆𝑤𝑓
= 1 + 23exp (−40𝑀𝑡) 

 

The latent heat of free water evaporation has 

been calculated by Broker et al and using 

Equation 8 (Darvishi 2017). 

(8) 𝜆𝑤𝑓 = 2503 − 2.386(𝑇 − 273)  

 

The thermal capacity is a function of the 

moisture content and can be calculated through 

Equation 9 (Brooker et al. 1992). 

(9) 𝐶𝑃 = 840 + 3350 × (
𝑀𝑡

1 + 𝑀𝑡
) 

 

The thermal efficiency of the dryer is 

calculated using Equation 10 (Soysal et al. 

2006). 

 

(10) 𝜂𝑒𝑛 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛

𝑃𝑖𝑛  × 𝑡
 

The specific energy loss was measured using 

Equation 11 (Darvishi et al. 2014) 

 

(11) 

𝐸𝑙𝑜𝑠𝑠 =
𝐸𝑖𝑛 −  𝐸𝑎𝑏𝑠

𝑚𝑤 
 𝑜𝑟 𝐸𝑙𝑜𝑠𝑠

= (1

− 𝜂𝑒𝑛) ×
𝑃𝑖𝑛  × 𝑡

𝑚𝑤
 

 

 

 

 

2.4. Exergy analysis  

The general exergy equilibrium in the 

microwave chamber was stated as follows 

(Darvishi et al. 2016) 
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: 

The amount of exergy transmitted due to 

evaporation in the drying chamber was 

calculated using Equation 14  (Sarker et al. 

2015) 

(14) 𝑒𝑥′𝑒𝑥𝑎𝑝 = (1 −
𝑇0

𝑇𝑝
) × 𝑚𝑤𝑣𝜆𝑤𝑝 

 

 In formula 14, mwv is calculated using 

formula 15 (Darvishi et al. 2016) 

(15) 𝑚𝑤𝑣 =
𝑚𝑡+∆𝑡 + 𝑚𝑤𝑣𝜆𝑤𝑝 

∆𝑡
 

 

Specific exergy loss was calculated using 

formula 16 (Darvishi et al. 2014)  :  

(16) 𝑒𝑥 =  𝐶𝑝[(𝑇 − 𝑇0) − 𝑇0ln (
𝑇

𝑇0
)] 

 

Exergy efficiency for each dryer system as 

the exergy rate used in drying the product to the 

exergy of drying source supplied to the system 

is calculated by the Equation 17 (Dincer & Sahin 

2004) 

(17) 𝜂𝑒𝑛 =
𝑒𝑥𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛

𝑃𝑖𝑛  × 𝑡
× 100 

 

The specific exergy loss was calculated 

using Equation 18 (Darvishi 2017). 

(18) 𝐸𝑋𝑙𝑜𝑠𝑠 =
𝐸𝑋𝑖𝑛 −  𝐸𝑋𝑎𝑏𝑠

𝑚𝑤 
 

 

In this research, the source of temperature 

and pressure in the environment was 20 ° C and 

101325 Pascal, respectively. After calculating 

the energy and exergy, all the data is sorted in 

Excel. 

 

2.5. Artificial Neural Network Modeling 

In this research, the artificial multilayer 

perceptron (MLP) neural network was used for 

systematization energy and exergy of the 

microwave dryer to classification pre-treatment 

(oven and ohmic) and power microwave by one 

hidden layer and 5 neurons using the 

NeuroSolution 6 software. Hyperbolic tangent 

linear activation functions (Equation 19), which 

are the most common type of activation 

functions, were used in the in hidden input and 

output layer. In this paper, the Levenberg-

Marquardt algorithm was used to learn the 

network. Additionally, 70% of the data were 

used for training, 15% of them were used for 

network evaluation (Validating Data), and 15% 

of the data were used for testing the network 

(Testing data) (Table 2). Five repetitions were 

considered to achieve the minimum error rate 

and maximum network stability as a mean of 

4000 Epoch for the network. Error was 

estimated using algorithm with back 

propagation error.  

The inputs for the neural network are divided 

into the following modes: 

1. Energy efficiency, Specific energy loss, 

Exergy efficiency, Specific exergy loss (total 

data) were considered as network inputs 

2. Energy efficiency was considered as network 

inputs 

3. Specific energy loss was considered as 

network inputs 

4. Exergy efficiency was considered as network 

inputs 

5. Specific exergy loss was considered as 

network inputs 

The classification for data pre-treatment 

(Oven, Ohmic and control) and power 

microwave (360 , 600 and 900 W) were based 

on the inputs above. Five repetitions were 

considered to achieve the minimum error rate 

and maximum network stability as a mean of 

4000 Epoch for the network. Error was 



Kariman et al. /Carpathian Journal of Food Science and Technology 2019,11(2),29-45 

 
 

34 
 

estimated using algorithm with back 

propagation error. Statistical parameters 

including RMS, Root Mean Square Error 

(RMSE), R2, and Mean Absolute Error (MAE), 

NMSE were calculated for inputs and 

relationships were calculated using the formulas 

shown in Table 1. 

 

 

 

 

Table 1. Neural Network Relationships 

Reference 
Formula 

Number 
Formula 

(B. Khoshnevisan, Sh. Rafiee, 

M. Omid 2013) 
(19) Tanh =  

𝑒𝑥−𝑒−𝑥 

𝑒𝑥+𝑒−𝑥  

(Azadbakht et al. 2016) (20) R2 = 1- 
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

(𝑃𝑖−𝑂)2  

 (21) R =  √1 −
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

(𝑃𝑖−𝑂)2  

(B. Khoshnevisan, Sh. Rafiee, 

M. Omid 2013) 
(22) RMSE = √∑

(𝑃𝑖−𝑂𝑖)2

𝑛

𝑛
𝑖=1  

(Azadbakht et al. 2017) (23) MAE =  
∑ |𝑃𝑖−𝑂𝑖|𝑛

𝑖=1

𝑛
 

 

 

Table 2. Optimization values for artificial neural network parameters 

Input 

Number of 

hidden 

layers 

Learning 

rule 

Type of 

activation 

function 

The 

number 

of 

One 

hidden 

layer 

neurons 

Testing 

data % 

Training 

data % 

Cross 

Validation% 

total data 1 
Levenberg 

Marquardt 

Hyperbolic 

tangent 
5 15% 70% 15% 

Energy 

efficiency 
1 

Levenberg 

Marquardt 

Hyperbolic 

tangent 
5 15% 70% 15% 

Specific energy 

loss 
1 

Levenberg 

Marquardt 

Hyperbolic 

tangent 
5 15% 70% 15% 

Exergy 

efficiency 
1 

Levenberg 

Marquardt 

Hyperbolic 

tangent 
5 15% 70% 15% 

Specific exergy 

loss 
1 

Levenberg 

Marquardt 

Hyperbolic 

tangent 
5 15% 70% 15% 

 

3.Results and discussions  

3.1. Classification based on pre-treatment of 

ohmic, oven and control 

Table (3) shows the MSE, RMSE, NMSE, 

R-MAE, and percent correct values. According 

to this table, the best MSE, NMSE, R-MAE, and 

percent correct values were associated with the 

oven and ohmic pretreatments in the 

classification process. All of the energy 

efficiency, special energy use, exergy 

efficiency, and special exergy use values 

constituted the input. The best oven pretreatment 
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values were MSE Train =0.123, RMSE Train 

=0.350, NMSE Train =0.497, MAE Train=0.248, R 

Train=0.709, and Percent Correct Train=90. 

Moreover, the best ohmic pretreatment values 

were MSE Train=0.068, RMSE Train=0.260, 

NMSE Train=0.258, MAE Train=0.164, R 

Train=0.846, and Percent Correct Train=83.33. 

Finally, the best Percent Correct Test value was 

obtained through the network input that was 

composed of the energy efficiency, exergy 

efficiency, and exergy loss data. The best MSE 

Test, RMSE Test, NMSE Test, and MAE Test values 

were obtained by means of the network that used 

the overall data as the input. As regards the 

ohmic pretreatment, the best Percent Correct Test 

value was obtained through the network that 

used the exergy loss as the input. The best MSE 

Test, RMSE Test, NMSE Test, and MAE Test values 

were also similar to the oven results. The RTrain 

values of the oven pretreatment corresponding 

to the energy efficiency, special energy loss, 

exergy efficiency, and special exergy loss were 

0.061, 0.31, 0.49, and 0.44, respectively. These 

values were 0.182, 0.501, 0.567, and 0.501 for 

the ohmic pretreatment in the order mentioned. 

These values did not suit the classification. The 

Percent Correct Train values corresponding to the 

energy efficiency, special energy loss, exergy 

efficiency, and special exergy loss were 84.21, 

68.42, 82.35, and 50 using the oven pretreatment 

and 20, 77.78, 47.37, and 81.81 using the ohmic 

pretreatment in the order mentioned. The best 

MSE, RMSE, and R-MAE values for testing the 

network with the oven and ohmic pretreatments 

were obtained when the network carried out the 

classification using the overall data as the input. 

Table (3) shows the “Test” values of this 

network.  
 

Table 3. Error values in predicting experimental data using optimal artificial neural network 
 Total input 

Performance Oven Ohmic Control 
 Train Test  Train Test  Train Test  

MSE 0.123 0.187 0.068 0.106 0.038 0.111 

RMSE 0.3507 0.4324 0.2608 0.3256 0.1949 0.3332 

NMSE 0.497 0.757 0.285 0.476 0.292 0.643 

MAE 0.248 0.343 0.164 0.229 0.080 0.170 

R 0.709 0.537 0.846 0.738 0.843 0.636 

Percent Correct 90 75 83.33 33.33 71.43 50 

 Energy efficiency 

MSE 0.271 0.349 0.259 0.237 0.091 0.019 

RMSE 0.52058 0.59076 0.50892 0.48683 0.30166 0.13784 

NMSE 1.110 1.412 1.050 0.960 0.787 0 

MAE 0.480 0.564 0.456 0.452 0.195 0.121 

R 0.061 -0.326 0.182 0.305 0.466 0 

Percent Correct 84.21 100.00 20.00 0.00 16.67 0 

 Specific energy loss 

MSE 0.231 0.272 0.190 0.219 0.114 0.067 

RMSE 0.4806 0.5215 0.4359 0.4680 0.3376 0.2588 

NMSE 0.949 1.100 0.793 0.887 0.781 0.679 

MAE 0.419 0.479 0.322 0.393 0.247 0.157 

R 0.310 0.016 0.501 0.479 0.481 0.633 

Percent Correct 68.421 25  77.778 100 12.500 0 
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 Exergy efficiency 

MSE 0.200 0.417 0.168 0.371 0.120 0.011 

RMSE 0.4472 0.6458 0.4099 0.6091 0.3464 0.1049 

NMSE 0.852 1.689 0.687 1.501 0.748 0 

MAE 0.373 0.607 0.322 0.561 0.186 0.079 

R 0.490 -0.428 0.565 0.239 0.601 0 

Percent Correct 82.35 100  47.37 40 22.22 0 

 Specific exergy loss 

MSE 0.199 0.377 0.187 0.177 0.014 0.381 

RMSE 0.4461 0.6140 0.4324 0.4207 0.1183 0.6173 

NMSE 0.806 2.181 0.749 1.022 0.232 1.545 

MAE 0.403 0.574 0.374 0.322 0.057 0.452 

R 0.441 -0.083 0.501 0.199 0.878 0.406 

Percent Correct  50  100 81.81  50 66.66  20 

 

The results from the classification conducted 

using the neural network, the oven and ohmic 

pretreatments and the control sample are shown 

in Table (4). According to the results from the 

Train classification, when the overall data was 

used as the input, the network displayed an 

acceptable capacity to distinguish the classified 

data pretreated by the oven and ohmic from the 

control data in the classification process. 

Moreover, the neural network was more potent 

in classifying the oven data than the ohmic data, 

resulting in the accurate classification of 18 data 

items out of the 20 data items. However, the 

ohmic results were 15 data items out of the total 

18 data items, 5 of the 7 control treatment data 

items were classified accurately. As seen in 

Table (4), when only the energy efficiency was 

used as the classification input, the classification 

did not succeed. In other words, of the 20 ohmic 

data items, only 4 data items were identified for 

classification while 16 data items were wrongly 

classified for the oven. Concerning the ohmic 

pretreatment data, of the 19 data items, 16 and 3 

data items were classified wrongly for the oven 

and ohmic pretreatments, respectively. 

Moreover, concerning the control data, , only 2 

of the 7 input data items were classified 

correctly, reflecting the incapacity of the energy 

efficiency (as the input) to identify the data for 

classification purposes. The data was mostly 

classified for the oven. As regards the special 

energy loss, 16 and 3 data items of the 19 input 

data items for the oven were classified correctly 

and wrongly for the ohmic, respectively. As for 

the ohmic, 14 and 4 data items of the 18 data 

items were classified correctly and wrongly for 

the oven, respectively. Moreover, as for exergy 

efficiency, of the 17 data items, 14 and 3 data 

items were classified correctly and wrongly for 

the oven, respectively. As for the ohmic, 9 and 

10 data items of the 19 data items were classified 

accurately and wrongly, respectively. Out of the 

19 data items for the control treatment, only 2 

data items were classified correctly. According 

to these results, the classification of the ohmic 

and oven data did not match the control data, 

while not all of the inputs mistook the oven and 

ohmic data for the control data. Concerning the 

data classification using the exergy loss as the 

network input, out of the 19 oven data items, 10 

and 9 data items were classified correctly and 

wrongly, respectively. Moreover, 18 and 4 data 

items of the 22 ohmic data items were classified 

accurately and wrongly (for the oven), 

respectively. Table (2) shows the “Test” data 

detected and classified for the network of 

concern. 
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Table 4.  Correct and incorrect values for each network's input data 

Total input train  

oven ohmic control 
Output / 

Desired 

Train Test Train Test Train Test  

18 3 3 2 2 1 oven 

2 1 15 1 0 0 ohmic 

0 0 0 0 5 1 control 

Energy efficiency  

16 5 16 4 5 0 oven 

3 0 4 0 0 0 ohmic 

0 0 0 0 1 0 control 

Specific energy loss  

13 1 4 0 7 1 oven 

6 3 14 4 0 0 ohmic 

0 0 0 0 1 0 control 

Exergy efficiency  

14 4 10 3 7 0 oven 

3 0 9 2 0 0 ohmic 

0 0 0 0 2 0 control 

Specific exergy loss  

10 2 4 4 1 4 oven 

9 0 18 0 0 0 ohmic 

1 0 0 1 2 1 control 

 

Table (5) shows the learning results of the 

neural network. According to this table, the best 

learning results in the training phase were 

obtained when the classification was carried out 

using the oveall network inputs, and thus it 

performed the classification in Run=1 and 

Epoch=3999. Given the RUN and Epoch values 

of the neural network with all inputs it could be 

stated that the neural network classified the data 

satisfactorily at a good speed when all of the 

input data was selected. As for cross validation, 

the best network with energy loss was simulated, 

which performed classification for RUN=4 and 

Epoch=76. Based on these values it is concluded 

that the data was not properly assessed for the 

classification purposes. 

 

Table 5. Some of the best neural network topologies to predict test values 

Training Cross Validation 
 

Epoch Run Epoch Run 

3999 1 87 4 Total input data 

2000 2 2177 5 Energy efficiency 

4000 3 76 4 Specific energy loss 

3999 2 234 4 Exergy efficiency 

2897 5 38 5 Specific exergy loss 
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Figures (3) and (4) show the Test and 

Training sensitivity coefficients of the network. 

As seen in Figure (3), the highest sensitivity 

coefficient was obtained in the testing using all 

inputs. As for the oven pretreatment, ohmic 

pretreatment, and control treatment the highest 

sensitivity coefficient was obtained with the 

overall data of energy efficiency, energy 

efficiency, and exergy loss, respectively. Figure 

(4) also suggests that the Training sensitivity 

coefficients of the oven pretreatment, ohmic 

pretreatment, and control treatment were 

obtained using the overall inputs of special 

exergy loss, energy efficiency, and exergy loss, 

respectively.  

 

3.2. Classification based on the input power 

of the microwave 

Table (6) shows the MSE, RMSE, NMSE, 

R-MAE, and percent correct values. According 

to this table, the best MSE, NMSE, R-MAE, and 

percent correct values were associated with the 

microwave power in the classification process, 

all of the energy efficiency, special energy loss, 

exergy efficiency, and special exergy loss values 

constituted the input. The best 360 W power 

values were Train =0.00243  ،  RMSE Train 

=0.0493  ، NMSE Train =0.0113  ،0.0458  =  

Train  MAE ، 0.9975 = R Train   ، =92.86   Train 

Percent CorrectMoreover, the best 600 W powe 

values were Train =0.0403 MSE، RMSE Train 

=0.0.2009  ، NMSE Train =0.1816  ،0.0878  =  

Train  MAE ، 0.912 = R Train   ، =100   Train  

Percent Correct, also the best 900 W power 

values were = 0.0153 MSE Train  ،  RMSE Train 

=0.124  ، NMSE Train =0.067  ،0.0679  =  Train  

MAE ، 0.9685 = R Train   ، =100   Train Percent 

Correct .Finally, the best Percent Correct Test 

value was obtained through the network input 

that was composed of the specific exergy loss 

data. The best MSE Test, RMSE Test, NMSE 

Test, and MAE Test values were obtained by 

means of the network that used the  exergy 

efficiencyas the input. As regards the ohmic 

pretreatment, the best Percent Correct Test value 

was obtained through the network that used the 

exergy loss as the input. The best MSE Test, 

RMSE Test, NMSE Test, and MAE Test values 

were also similar to the oven results. The RTrain 

values of the oven pretreatment corresponding 

to the energy efficiency, special energy loss, 

exergy efficiency, and special exergy loss were 

0.061, 0.31, 0.49, and 0.44, respectively. These 

values were 0.182, 0.501, 0.567, and 0.501 for 

the ohmic pretreatment in the order mentioned. 

These values did not suit the classification. The 

R Train values corresponding to the energy 

efficiency, special energy loss, exergy 

efficiency, and special exergy loss were 0.73, 

0.45, 0.71 and 0.53 using the 360 W and 0.52, 

0.42, 0.43  and 0.58 using the 600 W in the order 

mentioned, and for 900 W, best value was 0.69, 

0.46, 0.57 and 0.60, That this amount can not be 

suitable for classification . Table (6) shows the 

“Test” values of this network.  
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Figure 3. Artificial Neural Network Test sensitivity coefficients 

 

 

 
Figure 4. Artificial Neural Network Train sensitivity coefficients 
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Table 6. Error values in predicting experimental data using optimal artificial neural network 
 Total input data 

Performance 360 W 600 W 900 W 
 Train Test  Train Test  Train Test  

MSE 0.002437 0.12654 0.040361 0.17813 0.015376 0.24952 

RMSE 0.049366 0.355725 0.2009 0.422054 0.124 0.49952 

NMSE 0.011369 0.51247 0.181623 0.80157 0.067106 1.44368 

MAE 0.045817 0.16661 0.087845 0.25175 0.067987 0.28026 

R 0.9975 0.7905 0.9124 0.6703 0.9685 0.3460 

Percent Correct 92.86 75 100.00 100 100 50 

 Energy efficiency 

MSE 0.08987 0.1544 0.14406 0.2470 0.12513 0.2727 

RMSE 0.299783 0.392938 0.379552 0.496991 0.353737 0.522207 

NMSE 0.45955 0.6947 0.67218 1.0002 0.51293 1.5776 

MAE 0.18729 0.2175 0.29344 0.3742 0.26264 0.3899 

R 0.73613 0.6154 0.57258 0.4120 0.69871 0.3132 

Percent Correct 58.33 67 64.29 50 89.47 50 

  

Specific energy loss 

MSE 0.1542 0.268 0.1853 0.297 0.1835 0.251 

RMSE 0.392683 0.517687 0.430465 0.544977 0.428369 0.500999 

NMSE 0.7886 1.207 0.8089 1.718 0.7807 1.017 

MAE 0.3132 0.414 0.3788 0.480 0.3723 0.464 

R 0.4597 -0.106 0.4378 -0.053 0.4686 0.167 

Percent Correct 41.67 0 75.00 50 41.18 0 

 Exergy efficiency 

MSE 0.1052 0.2934 0.1837 0.2492 0.1523 0.0763 

RMSE 0.392683 0.517687 0.430465 0.544977 0.428369 0.500999 

NMSE 0.4911 1.1883 0.8265 1.1215 0.6649 0.4415 

MAE 0.2175 0.4104 0.3691 0.3964 0.3080 0.1730 

R 0.7135 0.2689 0.4166 0.1289 0.5789 0.7497 

Percent Correct 64.3 75 80.0 33 37.5 50 

 Specific exergy loss 

MSE 0.1576 0.2620 0.1344 0.2956 0.1499 0.2875 

RMSE 0.396989 0.511859 0.366606 0.543691 0.387169 0.53619 

NMSE 0.7093 1.0610 0.6542 1.7105 0.6377 1.2936 

MAE 0.3260 0.3979 0.2766 0.3917 0.3176 0.4012 

R 0.5395 0.3503 0.5883 -0.0581 0.6039 0.4255 

Percent Correct 40 25 46 0 100 100 
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The results from the classification conducted 

using the neural network, the microwave 

power's 360 W, 600W and 900 w are shown in 

Table (7). According to the results from the 

Train classification, when the overall data was 

used as the input, the network displayed an 

acceptable capacity to distinguish the classified 

data,  Moreover, the neural network was more 

potent in classifying the oven600W and 900 W 

power data than the 360 W power data. 

Resulting in the accurate classification of 18 

data items out of the 20 data items. However, the 

ohmic results were 15 data items out of the total 

18 data items, 5 of the 7 control treatment data 

items were classified accurately. As seen in 

Table (7), when only the energy efficiency was 

used as the classification input, the classification 

did not succeed, In other words, of the 12 360 W 

data items, only 7 data items were identified for 

classification while 5 data items were wrongly 

classified for the 900 W. the 600 W power data, 

of the 14 data only 9 data items were identified 

for classification while 5 data items were 

wrongly. For 900 W power Classified from 19 

data, 17 data are correct and 2 data are wrong.As 

regards the special energy loss, 5 and 7 data 

items of the 12 input data items for the 360 W 

power were classified correctly and wrongly, 

respectively, As for the 600 W power, 12 and 4 

data items of the 16 data items were classified 

correctly and wrongly for, respectively,  

Moreover, as for exergy efficiency, of the 14 

data items, 9 and 5 data items were classified 

correctly and wrongly for the 360 W power, 

respectively. As for the 600 W power, 12 and 3 

data items of the 15 data items were classified 

accurately and wrongly, respectively. For 900 W 

power Classified from 16 data, 6 data are correct 

and 10 data are wrong.. Also for the data 

classification using the special exergy loss as the 

network input, out of the 15 360 W power data 

items, 6 and 9 data items were classified 

correctly and wrongly, respectively. Moreover, 

6 and 7 data items of the 13 600 W power data 

items were classified accurately and wrongly, 

respectively. Table (7) shows the “Test” data 

detected and classified for the network of 

concern. For 900 W power Classified from 17 

data, 17 data are correct and 0 data are wrong. 

 

 

Table 7.  Correct and incorrect values for each network's input data 

Total input data  

900 W 600 W 360 W Output / Desired 

Test Train Test Train Test Train  

0 0 0 0 3 13 360 W 

1 0 3 15 1 1 600 W 

1 16 0 0 0 0 900 W 

Energy efficiency  

0 0 0 1 2 7 360 W 

1 2 2 9 0 3 600 W 

1 17 2 4 1 2 900 W 

Specific energy loss  

0 1 0 1 0 5 360 W 

4 9 1 12 1 6 600 W 

0 7 1 3 2 1 900 W 

Exergy efficiency  

0 0 2 1 3 9 360 W 
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1 10 1 12 1 5 600 W 

1 6 0 2 0 0 900 W 

Specific exergy loss  

0 0 0 0 1 6 360 W 

0 0 0 6 1 1 600 W 

3 17 2 7 2 8 900 W 

 

 

Table 8. Some of the best neural network topologies to predict test values 

Training Cross Validation  

Epoch Run Epoch Run  

132 2 63 4 Total input data 

339 2 1 3 Energy efficiency 

122 5 22 5 Specific energy loss 

133 3 4 4 Exergy efficiency 

121 5 42 3 Specific exergy loss 

 

 

 
Figure 5. Artificial Neural Network Test sensitivity coefficients 
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Figure 6. Artificial Neural Network Train sensitivity coefficients 

 
 

Table (8) shows the learning results of the 

neural network. According to this table, the best 

learning results in the training phase were 

obtained when the classification was carried out 

using the oveall network inputs, and thus it 

performed the classification in Run=12 and 

Epoch=132. Given the RUN and Epoch values 

of the neural network with all inputs it could be 

stated that the neural network classified the data 

satisfactorily at a good speed when all of the 

input data was selected. As for cross validation, 

the best network with energy efficiency was 

simulated, which performed classification for 

RUN=3 and Epoch=761. Based on these values 

it is concluded that the data was not properly 

assessed for the classification purposes. 

Figures (5) and (6) show the Test and 

Training sensitivity coefficients of the network. 

As seen in Figure (5), the highest sensitivity 

coefficient was obtained in the testing using all 

inputs, As for the power 360, 600 and 900 W the 

highest sensitivity coefficient was obtained with 

the overall data (Specific exergy loss). Figure 

(6) also suggests that the Training sensitivity 

coefficients of the 360 W was obtained using the 

overall inputs (special energy loss) and for 600 

W and 900 W was obtained using the overall 

inputs (special exergy loss) 

 

4. Conclusions  

According to the results, the neural network 

classifies the energy and exergy more 

effectively when there are more input items. The 

best network suiting the energy and exergy data 

was the network using the energy efficiency, 

special energy loss, exergy efficiency, and 

special exergy loss data (i.e. overall data) as the 

input. In this state, the neural network detected 

the pretreatment and microwave power data 

with acceptable precision and using the overall 

data as the input improved the classification 

precision. Moreover, when the overall data 

served as the input, the neural network staged 

the ability to learn better and faster than the other 

states, and it trained the network with fewer 

RUNs than the cases with fewer inputs. The 

sensitivity coefficient of the classification also 

indicated that when the neural network was 

trained using the overall data as the input, the 

sensitivity coefficient observed in the network 

testing and training phases was larger. In sum, 

the neural network displayed an acceptable 

capacity to classify the pretreatment and 
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microwave power data for the classification of 

energy and exergy of the kiwi drying process. 
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