journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

EVALUATION OF *IN VITRO* PROTEIN DIGESTIBILITY OF *Moringa oleifera* LEAVES WITH VARIOUS DOMESTIC COOKING

Harum Fadhilatunnur¹*, Fransisca² and Rike Tri Kumala Dewi²

¹Department of Food Science and Technology, Faculty of Agricultural Technology, IPB University, Bogor, Indonesia

²Department of Food Business Technology, School of Applied Science, Technology, Engineering, and Mathematics, Universitas Prasetiya Mulya, BSD City, Indonesia

*harum@apps.ipb.ac.id

https://doi.org/10.34302/crpjfst/2021.13.1.18

Article history:	ABSTRACT
Received:	Moringa oleifera is gaining attention for having high protein content with
23 April 2020	balanced amino acid composition. However, as in other plant-based protein,
Accepted:	its protein digestibility becomes of concern presumably due to the presence
25 February 2021	of antinutritional compounds such as tannins, phytic acid, and saponins. In
Keywords:	this study, the effect of domestic cooking (blanching, steaming, boiling, and
Antinutritional coumpound;	sautéing) to protein content, protein digestibility, and antinutritional
Domestic cooking;	compounds of Moringa leaf powder was investigated. Analysis revealed that
Moringa oleifera;	the Moringa leaf powder contained 33.12% protein (with 90.52% pepsin
Protein content;	digestibility), 41.97% carbohydrates, 7.56% fat, 9.77% ash, and 33.88%
Pepsin digestibility.	dietary fiber. The protein content and pepsin digestibility (>84%) were
	notably high and were comparable to those of other plant-based protein
	sources, such as soybean and peas. Protein content tend to increase with
	domestic cooking. The treatments applied did not manage to reduce phytic
	acid and saponins. Blanching and boiling significantly reduced the tannin
	content while, blanching and sautéing increased the saponin content. The
	pepsin digestibility remained the same despite of reduction in tannins.
	Correlation study showed that among the three antinutritional compounds,
	it was saponin which adversely affect the pepsin digestibility of Moringa
	leaf powder (r=- 0.463). Overall, boiling seemed to be the best method of
	cooking for Moringa leaves in term of protein content and pepsin
	digestibility.