CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journalhomepage:http://chimie-biologie.ubm.ro/carpathian_journal/index.html

MANAGING QUALITY OF AROMATIZED WINE PREPARED BY CO-FERMENTATION OF GRAPE MUST AND BY-PRODUCTS OF ESSENTIAL ROSE OIL INDUSTRY

Anton Slavov^{1⊠}, Hristo Spasov², Rada Dinkova³, Petko Denev⁴

¹Department of Organic and Inorganic Chemistry, Technological Faculty, University of Food Technologies, 26 Maritsa Blvd., 4000 Plovdiv, Bulgaria

²Department of Wine and Beer Technology, Technological Faculty, University of Food Technologies, 26 Maritsa Blvd., 4000 Plovdiv, Bulgaria

³Department Food Preservation and Refrigeration Technology, Technological Faculty, University of Food Technologies, 26 Maritsa Blvd., 4000 Plovdiv, Bulgaria

⁴Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria

[™]antons@uni-plovdiv.net

https://doi.org/10.34302/crpjfst/2021.13.3.4

Article history:

Received:	Aromatized rosé wines with addition of essential rose oil industry wastes
2 February 2021	during fermentation of grape must were prepared. Six variants: W1-W6 with
Accepted:	added 0.05%, 0.1%, 0.25%, 0.5%, 1%, and 2% Rosa damascena Mill. waste,
25 July 2021	respectively, and control wine were prepared. Slight differences in the color
Keywords:	shades were observed: the lower the added rose waste, the more intensive
Aromatized wine:	peony color was obtained and this observation was confirmed with the
Rosé:	increase of the hue angle value -46.21 ± 0.84 for the control and 54.95 ± 0.70
Mavrud;	for the W6. The polyphenol content increased significantly from
Rosa damascena Mill.;	355.01 ± 10.14 to 576.08 ± 12.08 µmol GAE L ⁻¹ for the control and W6,
Co-fermentation.	respectively. The major phenolic acids determined were 3,4-dihydroxy
	benzoic (up to $65.1\pm1.1 \text{ mg L}^{-1}$ in W6), gallic (up to $25.9\pm0.9 \text{ mg L}^{-1}$ in W6)
	and chlorogenic acid (up to $11.7\pm0.6 \text{ mg L}^{-1}$ in W5). The GC-FID analysis
	revealed slight increase of higher alcohols for W5 and W6. β-Caryophyllene,
	β-citronellol, phenethyl alcohol, rose oxide, and geraniol content increased
	significantly compared to control. The sensory evaluation revealed most of
	the panelists preferred W1 and W2 although some of the testers liked better
	the variants with higher amounts of added waste. The results suggested that
	rose waste successfully could be utilized for preparation of new aromatized
	wines with distinctive rose aroma