

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

PROCESSING METHODS AND STORAGE PERIOD AFFECT THE QUALITY OF PALM OIL

Enyi Chukwunwike U.¹, Ojimelukwe Philippa C.^{1⊠}

¹Michael Okpara University of Agriculture Umudike, College of Applied Food Sciences and Tourism, Department of Food Science and Technology, P.M.B 7267 Umuahia, Abia State Nigeria.

[™]philippaco60@gmail.com

https://doi.org/10.34302/crpjfst/2021.13.4.15

Article history:	ABSTRACT
Received:	The effects of processing methods and storage periods on oil palm quality
27 August 2021	were studied in this research. The palm fruits were subjected to four different
Accepted:	processing methods; boiling (B), soaking followed by boiling (SWB),
23 October 2021	steaming (ST) and extraction with petroleum ether (SP). Quality indices,
Keywords:	functional; physical properties and selected vitamins were determined. The
Palm oil;	results showed that free fatty acid values ranged from 5.14 in SP to 6.54
Nutrient quality;	mg/KOH/g in SWB: peroxide value from 2.67 in SP to 10.07meq/kg in
Processing methods;	SWB, saponification value from 194.48 in ST to 196.82 mg/KOH/g in SWB;
Storage period;	iodine value from 49.07 in SP-52.24g/100g in SWB. Free fatty acid,
Indices of fat deterioration	peroxide and iodine values increased as storage time increased except for
	saponification value which decreased. The moisture content value was from
	0.17-0.35 %, specific gravity (0.89-0.92 g/cm ³); smoke point (231.67-
	240.00°C), flash point (294.00-303.00°C) and fire point (297.33-309.33°C).
	The soaked and boiled sample (SWB) had the highest values in moisture,
	smoke and flash point. While steaming (ST) induced the highest values in
	specific gravity and fire point. The sample extracted with petroleum ether
	had the lowest values for all the physical properties determined and the
	highest values for vitamins A (718.97IU/100g) and E (43.95IU/100g. The
	boiled sample (B) had the lowest values for vitamin A (699.47IU/100g) and
	vitamin E (38.87IU/100g). Both vitamins decreased as storage time
	increased. Moisture content and specific gravity increased while smoke,
	flash and fire points decreased as storage time increased. Emulsion capacity
	ranged from 62.19-100 % and emulsion stability ranged from 42.70-100 %.
	Steaming method (ST) produced oil samples with the highest values for both
	emulsion capacity and stability while extraction with petroleum ether had
	the lowest values. Both emulsion stability and emulsion capacity increased
	as storage time increased. Extraction with petroleum ether was the best in
	terms of good quality, followed by steaming and boiling methods.