journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

DETERMINATION OF PHENOLIC CONTENTS AND ANTIOXIDANT ACTIVITIES OF INFUSIONS PREPARED FROM LEMONGRASS (Melissa officinalis)

Recep Palamutoğlu^{1⊠}, Cemal Kasnak¹, Muhammed Dursun¹, Rabia Nur Ünaldi¹, Nihat Özkaplan¹

¹Afyonkarahisar Health Sciences University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 03200, Afyonkarahisar, Turkey

[™]receppalamutoglu@hotmail.com

https://doi.org/10.34302/crpjfst/2022.14.1.8

Article history:	Lemongrass (Melissa officinalis) contains high amount of phenolic acids,
Received:	specifically rosmarinic acid. In this study, dried Melissa officinalis teas were
21 February 2021	prepared at different water temperatures (65, 80, 95 °C) and infusion times
Accepted:	(60, 120, 240 s) to determine the total amounts of phenolic compounds,
25 December 2021	antioxidant activities, and the physical properties of the prepared infusions.
Keywords:	From the result the highest total phenolics content (TPC) in ground samples
Antioxidant;	was recorded in infusions prepared at 95 °C at 240 s, but no statistically
Infusion;	significant difference (p> 0.05) was found between the TPC of infusions
Lemongrass;	prepared at lower temperatures in the same period. It was determined that
Phenolics.	the effect of time was not significant ($p > 0.05$) during each heat application
	in both ground and non-ground samples except for the ground lemongrass
	tea samples at 80 °C. Rosmarinic acid content in the ground samples
	increased significantly (p < 0.05) due to the increase in water temperature
	and achieved the highest value of 19.04±0.21 mg/g when a temperature of
	95 °C was applied. As the water temperature of each treatment increased,
	the pH values of the ground infusions decreased significantly ($p < 0.001$),
	with the lowest pH value of 5.51 ± 0.01 at 95°C water temperature and 240 s
	infusion time samples. The effect of water temperature and infusion time on
	the soluble solid content of the samples was not significant ($p > 0.05$) (except
	non-ground sample at 120 s infusion time). The results will help future
	research on factors such as water temperature and infusion time, as well as
	grinding, to ensure that bioactive components are transferred to antioxidant-
	rich infusions.