journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

FUNGAL HOME-MADE ENZYMATIC COCKTAILS FOR APPLE JUICE CLARIFICATION

Díaz G.V.^{1,2}, Coniglio R.O.^{1,2}, Bordaquievich M.F.¹, Zapata P.D.^{1,2}, Villalba¹, Fonseca M.I.^{1,2}

¹Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS). Laboratorio de Biotecnología Molecular.

Misiones, Argentina.

²CONICET, Buenos Aires, Argentina.

[⊠]gabrielavdiaz@live.com

<u>https://doi.org/10.54502/crpjist/2022.14.5.8</u>	
Article history:	ABSTRACT
Received:	Sugarcane bagasse and cassava bagasse are lignocellulosic industrial
6 April 2022	residues that can be used as cheap substrates for organisms' growth. These
Accepted:	lignocellulosic residues are also suitable for inducing enzyme secretion that
29 July 2022	can be applied in different bioprocesses such as juices clarification. The goal
Published	of our work was to use Aspergillus niger LBM 134 to produce xylanases,
September 2022	characterize them and employ these enzymes in the clarification of apple
Keywords:	juice and pulp. A. niger LBM 134 was isolated from a natural environment
Bioprocess;	and grown on sugarcane bagasse and cassava bagasse. The highest
Sugarcane bagasse;	endoxylanase and β -xylosidase activity were 144 \pm 5,65 and 0,74 \pm 0,05 U
Cassava bagasse;	mL ⁻¹ , respectively (p<0.05). The optimum activity and high stability at
Aspergillus niger;	acidic pH values make these enzymes suitable for biotechnological
Endoxylanases	applications in juice industries. The enzymatic cocktails produced by the
	fungus grown on cassava bagasse reached the major clarification of apple
	juice $(36,66 \pm 4,01\%)$ and pulp $(60,15 \pm 5,63\%)$ (p<0.05). These
	clarification percentages were due to the hydrolysis of hemicellulosic
	material carried out by the xylanases from A. niger LBM 134.

https://doi.org/10.34302/crpjfst/2022.14.3.8