CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

ADVERSARIAL AUTOENCODERS FOR AGRICULTURE YIELD FORECASTING

Yueyang Symus Say¹, Mark Wong Kei-Fong¹, Eddie Ng Yin-Kwee ^{1⊠}

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

[™]MYKNG@ntu.edu.sg

https://doi.org/10.34302/crpjfst/2022.14.3.9

Article history:	ABSTRACT
Received:	For sustainable food production. In agriculture, crop yields are increasingly
6 July 2022	affected by warmer temperatures, and pest infestations caused by climate
Accepted:	change have increased agricultural losses. Increasing local production is
12 August 2022	important to reduce our dependence on imported food and provide a buffer in
Published	case of supply disruptions such as those caused by the COVID-19 pandemic.
September 2022	To increase food security, it is important to optimize agricultural yields, despite
Keywords:	the high costs associated with factors such as supplemental feeding, pest control
Agriculture;	measures, or operating costs.
Adversarial Autoencoder;	We present a Machine Vision method (MV) with Adversarial Autoencoder
Crop yield forecasting;	(AAE) as an approach to crop yield optimization. Predicted leaf area is
Machine Learning;	projected from initial germination to early vegetative stages. Generative
Deep learning;	machine learning models are analyzed to determine a suitable architecture for
Machine Vision.	crop yield prediction. Images of romaine lettuce grown over time under
	different conditions (e.g., light intensity) are used as the data set. Preliminary
	results show that the model created is able to predict an image with sufficient
	accuracy based on a single condition. With our method, corrective actions can
	be taken early, and yields recover from initial below-average values. Further
	work can be done to extend the model to other conditions such as moisture,
	strength of available sunlight, or soil nutrient content.