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 ABSTRACT 
For sustainable food production. In agriculture, crop yields are increasingly 

affected by warmer temperatures, and pest infestations caused by climate 

change have increased agricultural losses. Increasing local production is 

important to reduce our dependence on imported food and provide a buffer in 

case of supply disruptions such as those caused by the COVID-19 pandemic. 

To increase food security, it is important to optimize agricultural yields, despite 

the high costs associated with factors such as supplemental feeding, pest control 

measures, or operating costs.  

We present a Machine Vision method (MV) with Adversarial Autoencoder 

(AAE) as an approach to crop yield optimization. Predicted leaf area is 

projected from initial germination to early vegetative stages. Generative 

machine learning models are analyzed to determine a suitable architecture for 

crop yield prediction. Images of romaine lettuce grown over time under 

different conditions (e.g., light intensity) are used as the data set. Preliminary 

results show that the model created is able to predict an image with sufficient 

accuracy based on a single condition. With our method, corrective actions can 

be taken early, and yields recover from initial below-average values. Further 

work can be done to extend the model to other conditions such as moisture, 

strength of available sunlight, or soil nutrient content. 
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1.Introduction 

Climate change has adversely affected crop 

yields and land suitable for agriculture (Zhang & 

Cai, 2011). The direct effects of global warming 

alone are projected to lead to a 2-13% decline in 

yields of major crops (Wang et al., 2020) 

Jägermeyr et al. (2021), and yield losses could 

be more severe than previously thought, putting 

the old agricultural model under production 

pressure to meet the demands of the future. 

This concern is driven by unsustainable 

agricultural practices, lower crop yields due to 

climate change (Schmidhuber & Tubiello, 

2007), and increasing scarcity of water and 

arable land (Downing, 2013; Porter et al., 2017; 

Rosegrant & Cline, 2003). By 2050, the world's 

population is projected to grow to 9 billion 

people, leading most countries to worry about 

numerous food security challenges, including 

quality, environmental and climate impacts, and 

reliable access to food sources sufficient to meet 

growing global demand (Diouf, 2009; Porter et 

al., 2017; Wise, 2013). Although demand is 

steadily increasing, 70% more food needs to be 

produced by 2050, however at the same time, 

agriculture's share of global GDP has shrunk to 

just 3 percent, a third of what it was just a several 

decades ago. 

Food security is an important global issue 

and will remain so for the foreseeable future, as 

it is more relevant than ever given the immense 

global impact of the COVID-19 pandemic 

(Zurayk, 2020). The zoonotic virus was not only 

introduced by a food supplier, but now reveals 

http://chimie-biologie.ubm.ro/carpathian_journal/index.html
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significant deficiencies in the current food 

supply system. As a result of border and market 

closures, the impact of quarantines, and the 

disruption of trade routes, the pandemic has 

created an unprecedented threat to food logistics 

and socioeconomic systems around the world, as 

well as to the livelihoods of billions of people 

(Galanakis, 2020; Laborde et al., 2020; Zurayk, 

2020). Considering the impact of climate change 

on pests (Skendžić et al., 2021), maintaining 

current crop yields could be a colossal task in the 

future. 

Predicting crop yield is a multifaceted 

problem because yield is determined by a variety 

of factors that are not limited to factors such as 

genotypic variation within crops, nutrient levels 

in their growing media, and weather. Despite the 

variability in crop yield predictions, it is 

important that such predictions be made because 

all crops require time to grow and, consequently, 

financial and spatial resources must be allocated 

for their growth. Optimizing yields relative to 

costs is a major concern for growers. 

Early crop growth models such as the 

Decision Support System for Agrotechnology 

Transfer (DSSAT) (Jones et al., 2003) and 

CropSyst (Stockle et al., 1994) are still used for 

simulating crop growth, especially for 

simulating the effects of climate change and/or 

the interactions between genetics (G), 

environment (E), and management (M). 

However, these crop growth models require 

extensive calibration to produce accurate results. 

In addition, the significant cost of runtime and 

maintenance limits their use to farmers who 

have the appropriate knowledge, equipment, and 

financial resources. As a result, these systems 

cannot be used by low-income farmers who lack 

the necessary resources, and the scalability of 

the models is also limited. 

Deep Learning (DL) methods such as 

Convoluted Neural Networks (CNN) have been 

proposed as an improved method for crop 

prediction (Khaki et al., 2020; Sakurai et al., 

2019; Sun et al., 2019) and disease and pest 

detection (de Ocampo & Dadios, 2018; 

Ferentinos, 2018; Fuentes et al., 2017; 

Sladojevic et al., 2016; Wallelign et al., 2018). 

By learning and characterizing the performance 

of the plants, continuous monitoring will 

provide new insights to optimize the growth rate 

of the plants (Al-Shakarji et al., 2017). The 

proposed solution allows finding correlations 

between leaf area and biomass, helping to 

predict plant metrics, including growth rate and 

leaf area. This knowledge is of particular 

importance for controlling plant growth 

parameters in response to context and feedback 

(Shadrin et al., 2019; Shadrin et al., 2018). In 

addition, DL has been shown to be able to 

abstract nonlinear relationships that may not be 

detected by traditional statistical methods. 

Recent developments in DL and its 

application to crop yield prediction aim to 

improve the accuracy of current models. 

Numerous research papers have applied DL to 

crop yield prediction using remote sensing 

techniques for data collection and various 

vegetation indices for yield quantification. 

Chlingaryan et al. (2018) extensively analyzed 

the use of Machine Learning (ML) for crop yield 

prediction and nitrogen estimation. They 

identified trends in the use of vegetation indices 

from satellite imagery with backpropagated 

neural networks for more accurate crop yield 

prediction and predicted that future applications 

of ML will be more optimized and focused on 

specific precision agriculture applications. 

Kulkarni et al. (2018), attempted time series 

prediction using recurrent neural networks to 

predict yields given soil and rainfall conditions.  

A neuroevolutionary algorithm based on ML 

was developed to predict crop yields by 

providing access to information about trait 

importance (Kanimozhi & Akila, 2020). 

Similarly, a genetic algorithm-based approach 

for crop yield prediction has been identified and 

shown to outperform traditional neural networks 

and classical statistical methods in crop yield 

prediction (Bi & Hu, 2021). A comprehensive 

literature review of crop yield prediction using 

DL and remote sensing was also conducted in 

2022 (Muruganantham et al., 2022) noting 

commonalities such as the fact that the most 

common remote sensing technology is                          

the Moderate-Resolution Imaging                         
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Spectroradiometer (MODIS), common indices 

used to quantify performance, and ML models 

used in previous research. 

However, this newer research focuses on 

predicting crop yields at the macro level using 

overhead imagery and data to analyze yields 

across different land areas. In land-poor 

locations, conventional farming methods are 

costly and inefficient due to limited land, and 

many local farms have switched to high-yield 

urban/indoor agriculture, where a greater 

number of crops can be grown in the same space, 

using supplemental light to enhance plant 

growth (Jones, 2018).  

In urban agriculture, crop yields can still be 

affected by variability, such as light conditions, 

but conventional yield forecasts based on 

satellite imagery cannot be used to accurately 

predict growth. Identifying these regions of 

suboptimal yield and correcting growth rates can 

improve overall crop yield and optimize the 

return on current operations. Current methods 

also do not account for dynamic changes in 

conditions; they cannot predict a change in 

conditions during growth. Yields are obtained 

by harvesting, which would result in an 

interruption of the plant's growth cycle. 

 

 

 

 

 

Research Objectives 

Hence, our work seeks to: 

Utilize generative ML/DL models to 

visualize plant growth using images captured 

with simple, low-cost cameras. 

Identify if the generative model can forecast 

a visual change in yield with different growing 

conditions. 

This paper will first introduce past work 

pertaining to the use of ML in crop yield 

prediction, before elaborating on the generation 

of data and introducing the architecture of the 

generative model used in the work. The results 

will then be evaluated, and the project 

summarized thereafter. 

2. Materials and methods 

2.1. Data Generation  

As mentioned in the introduction, most 

publicly available crop yield prediction datasets 

were selected for analysis. For this project, these 

datasets were unsuitable for analysis, so a 

suitable image dataset had to be created. We 

chose to create our own imagery using a simple, 

commonly available camera module so that we 

did not need expensive hyperspectral or high-

resolution camera systems that may not be 

available to the average farmer. However, 

network issues limited the establishment of 

affordable microcontroller-based camera 

modules. The images were hence instead 

captured using a common smartphone.

 
Figure 1. Schematic of experimental setup, each plant was grown in a single rectangular pot for ease 

of organization, 8 pots were placed in each camera perspective. 

 

A B C 
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Romaine lettuce was selected as the plant for 

analysis because it has a short harvest period 

(approximately 1 month) and a large leaf area 

suitable for this analysis. Three experimental 

setups A, B, and C, as shown in Fig. 1, were 

created and placed outdoors under a tarpaulin to 

create a semi-controlled environment. 

Experimental setups A and B had LED grow 

lights attached to them, each of which was 

turned on 2 hours before sunrise and after sunset, 

providing a total of 4 hours of daylight 

extension. For setup C, the front of the tarpaulin 

was opened to create a semi-protected 

environment, as a fully protected tarpaulin could 

be too hot (in tropical regions) and humid for 

optimal plant growth. 

 

 
Figure 2. Comparison of raw and processed images 

The images captured were then processed 

using the OpenCV python library (Bradski & 

Kaehler, 2008) to generate an image mask and 

resize the image. Furthermore, ArUco markers 

(Garrido-Jurado et al., 2014) were attempted to 

be utilized in this step. Due to variations in 

image capture, the angle, perspective, and size 

of the captured superstructure may change from 

image to image. The ArUco markers serve as 

image anchors, with known dimensions and 

orientations assigned to each marker. 

Accordingly, the images can be scaled and 

repositioned according to the known dimensions 

and orientations, standardizing the images and 

improving the accuracy of the dataset. In this 

step, only the information of the image relevant 

to the analysis is retained, and the image is 

converted to an appropriate size so that it can be 

run through the model in the next step with 

reasonable computational effort. Figure 2 

illustrates the results of the image processing. 

Three batches of romaine lettuce were created 

over a harvest cycle of 30-40 days. For testing 

purposes, images of the lettuce after 34 days 

were used as a test data set to quantify the 

performance of the model. 

 

2.2. Architecture 

Generative Adversarial Networks (GANs) 

(Goodfellow et al., 2014) were originally 

considered, but the limited amount of available 

data and inability to account for conditions 

limited the application of the model in this 

project. Instead, the Adversarial Autoencoder 
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(AAE) (Makhzani et al., 2015) was identified as 

an appropriate architecture for the goals of this 

project. The AAE consists of the encoder, 

decoder, and discriminator and finds application 

in the supervised generation of data to be used 

for this analysis. 

The combination of encoder and decoder 

aims to reconstruct the image and thus obtain a 

compressed representation of the image in terms 

of the hidden layer (Z), while the combination of 

encoder and discriminator aims to map Z to the 

known distribution. 

 

 
Figure 3. Legend for an Adversarial Autoencoder (AAE) 

The PyTorch framework was used to code 

the model. For the Figures described in the 

following Sections 2.2.1 to 2.2.3, the layers will 

be identified as per the legend in Fig. 3, with the 

values in brackets stating the probability values 

as required for their respective layers. 

 

2.2.1. Encoder 

 
Figure 4. Encoder Architecture 

Fig. 4 describes how the layers in the 

encoder are connected. The original encoder had 

only Fully Linked (FC) layers with the Rectified 

Linear Unit (ReLU) activation function. 

However, for the application in this project, 

convolutional layers (Lecun et al., 1998) were 

also used because convolutional layers act as 

filters to highlight areas of interest in an image. 

Three Conv2D layers were therefore added to 

the original encoder architecture before they 

underwent LeakyReLU activation with a 

probability of 0.1 and were flattened into a 1-

dimensional (1D) array.  

The LeakyReLU function was used because 

the resulting reconstruction loss was less than 

using ReLU and the fidelity of the generated 

image was slightly increased. This 1D array was 

then passed through 2 FC layers, with the output 

of the second FC layer being Z. Dropout layers 

with a probability of 0.1 were also added to 

reduce overfitting of the data set. 
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2.2.2. Decoder 

 
Figure 5. Decoder Architecture 

Similar to 2.2.1, the original Decoder only 

consisted of FC layers and activation functions. 

The model was modified to include 

ConvTranspose2D layers, with inspiration from 

Radford et al. (2016), dropout layers, and the use 

of the LeakyReLU activation function for the 

same reasons as described in 2.2.1. The decoder 

takes Z and an array (Y) containing constraints 

such as time. Figure 5 describes how the layers 

are connected in the decoder. The reconstruction 

loss between the encoder/decoder is then 

calculated and tracked, and the weights of the 

encoder and decoder are updated.  

 
 

2.2.3. Discriminator 
 

 
 

Figure 6. Discriminator Architecture 

The discriminator uses 2 FC layers with the 

LeakyReLU activation function along with 

dropout layers to determine if a Z-layer sample 

is from the known distribution. The second FC 

layer is passed through another FC layer to 

produce a binary output indicating whether the 

sample is from the known distribution. The min-

max GAN loss introduced by Goodfellow et al. 

(2014) is then calculated and then 

backpropagated to update the encoder and 

discriminator weights. For this project, a beta 

distribution with parameters (5,1) was used as it 

was found to give visually similar results to the 

actual image. Fig. 6 describes part of the 

architecture of the discriminator. 
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2.2.4. Combined 

 
Figure 7. Combined Architecture 

The encoder, decoder and discriminator are 

combined as shown in Fig. 7. The original image 

is passed through the encoder to obtain Z, an 

array of size 512, and Y, the array of conditions. 

The conditions in Y include: the time, a coded 

array for the degree of protection in the 

experimental setups, and whether additional 

light was present in the experimental setups. Y 

and Z were then input to the decoder, and an 

image was regenerated as described in 2.2.2. 

A sample is taken from Z and Z', where Z' 

follows a known distribution. The two samples 

are passed through the discriminator in 2.2.3 and 

the loss is calculated. The model was run for 100 

epochs using the Adam optimizer with a 

learning rate of 6e-4 for the generator 

(encoder/decoder) and a learning rate of 8e-4 for 

the regulator (encoder/discriminator). 

 

2.3. Evaluation 

The Mean Structural Similarity Index 

Measure (MSSIM) (Zhou et al., 2004) was used 

to quantify the fidelity of the generated image. 

 𝜇𝑥 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1   (1) 

 𝜎𝑥 = (
1

𝑁−1
∑ (𝑥𝑖 − 𝜇𝑥)2𝑁

𝑖=1 )0.5 (2) 

 𝑙(𝒙, 𝒚) =
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
 (3) 

 𝑐(𝒙, 𝒚) =
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
 (4)  

 𝑠(𝒙, 𝒚) =
𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
 (5) 

𝑆𝑆𝐼𝑀(𝒙, 𝒚) = [𝑙(𝒙, 𝒚)]𝛼 ∗ [𝑐(𝒙, 𝒚)]𝛽 ∗ [𝑠(𝒙, 𝒚)]𝛾(6)  

The indices x and y refer to the two images 

to be compared. μ refers to the arithmetic mean 

and σ to the standard deviation of the analyzed 

pixels. The luminance, contrast and structure 

scores are denoted to as l, c and s respectively. 

This metric involves the extraction of three 

key features that contribute to the structure of 

the image – luminance (1), contrast (2), and 

structure, as described in Fig. 8. Luminance 

compares the average intensity of the pixel 

values, contrast compares the standard deviation 

of the signal, while structure compares the 

normalized signal so that the signal has a 

uniform standard deviation.  

A series of comparison functions (3-5) are 

then created for luminance, contrast and 

structure to compare the actual and expected 

signals. The constants C1, C2, and C3 provide 

numerical stability as the denominator 

approaches 0. The SSIM value (6) is then 

calculated based on the three comparison 

functions, with α, β and γ indicating the relative 

importance of the luminance, contrast and 

structure values. A value of 0 indicates complete 

dissimilarity (the images are completely 

different) and a value of 1 indicates complete 

similarity (the images are exactly the same). 
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A Gaussian weighting function of size 11x11 is 

introduced to compute the SSIM over localized 

regions of the image. The local SSIM values are 

then averaged to obtain the MSSIM values. The 

PyTorch Image Quality Assessment package 

(Rozet, 2022) was used to calculate this metric. 

 

 

 

 

 

 

 

3. Results and discussions  

 
Figure 8. Loss curves for AAE 

 

The loss curves for training the AAE model 

are shown in Fig. 8. Fig. 9 shows the transition 

from the real to the generated image for Setup 

A, Batch 4. It can be seen that the model is able 

to generate images that follow the trend of the 

real images. 

From Fig. 10, The images produced vary 

over time and under different application 

conditions. Comparing the images from day 34, 

it is noticeable that the image from setting C has 

a larger green area than the image from setting 

A.  

This difference becomes even more apparent 

when the same images are compared again on 

day 38. A more intense green is also observed 

when the Day 38 and Day 34 images are 

compared for both settings. The MSSIM scores 

for the 3 settings were then calculated using the 

data provided for the test. These scores are 

tabulated in Table 1. 
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Figure 9. Transition from actual to generated images, Setup A 
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Figure 10. Comparison of generated images between Setup A (left) and C (right) 

 

Table 1. MSSIM Scores, Setups A-C 
Setup A 

Day 34 35 36 37 37 38 

Score (x10) 
5.76 5.76 5.81 5.82 5.73 5.70 

Setup B 

Day 34 35 36 37 37 38 

Score (x10) 
5.83 5.76 5.76 5.67 5.70 5.69 

Setup C 

Day 34 35 36 37 37 38 

Score (x10) 
5.26 5.09 5.24 5.01 5.12 5.16 
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The results from day 34 to the first instance 

of day 37 are from the 2nd batch, and the results 

from the second instance of day 37 to day 38 are 

from the 3rd batch. Experimental setups A and 

B are protected experimental setups with 

supplemental light, and experimental setup C is 

a semi-protected experimental setup without 

supplemental light, as described in 2.1. 

 

 

 
Figure 11. Sample of generated images against actual images 

As can be seen from Table 1, the model did 

not perform poorly, but neither did it excel, with 

MSSIM values between 0.5 and 0.6, which is 

confirmed by the generated images, as shown in 

Fig. 11. Nevertheless, the models are able to 

capture the differences between configurations 

despite the limited amount of data. If more and 

more diverse data were available, the 

effectiveness of the model could be analyzed in 

more detail. 

 

4. Conclusions  

The AAE model has shown the ability to 

regenerate harvest images and generate images 

with different variables (e.g., time). This can 

help reduce harvest losses because the 

architecture can be modified to visually predict 

what the yield will be under changing 

conditions. With camera smartphones becoming 

more accessible, farmers can use any 

smartphone on hand for image capturing – 

avoiding the need for custom hardware 

deployment in a commercial setting. Regardless 

of the source of images (low-cost cameras or 

smartphones), the architecture can still be 

applied for crop yield prediction. 

However, further work is needed. The data 

generated is insufficient (only 3 batches could be 

generated), and there are a number of external 

variables (e.g., outdoor temperature, solar 

radiation) that could not be accounted for in this 

project. Reference markers in the form of ArUco 
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markers were also used, but the OpenCV library 

was unable to consistently capture the markers 

throughout the dataset, possibly due to the 

reflection of sunlight on the laminated markers 

affecting the library's ability to read the markers. 

Therefore, there may be differences in the 

perspective and positions of the captured 

images, even though the authors did their best to 

keep them constant.  

Despite the limitations mentioned above, the 

generation of such images is a testament to the 

potential of the model. If the model is developed 

further, the application of such an architecture in 

the distant future could change the definition of 

crop yield prediction.  

In land-poor locations with the transition to 

high-tech, high-yield agriculture, the model can 

be extended with low-cost cameras to create a 

cost-effective image capture system, and the 

collected data can be applied to the model to 

enable a modern application of crop yield 

prediction given the current state of agriculture 

in land-poor locations. In this way, crop yields 

and costs could be optimized. 
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