CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journalhomepage:http://chimie-biologie.ubm.ro/carpathian_journal/index.html

MICROWAVE ASSISTED EXTRACTION OF CUSTARD APPLE (ANNONA SQUAMOSAL L.) PEEL

Trang Nguyen Thi^{1,2} and Huan Phan Tai^{1*}

¹Nong Lam University - Ho Chi Minh City, Faculty of Chemical Engineering and Food Technology, Thu Duc, Ho Chi Minh city 700000, Vietnam.

²Industrial University of Ho Chi Minh City, Institute of Biotechnology and Food Technology, Go Vap district, Ho Chi Minh city 700000, Vietnam.

pthuan@hcmuaf.edu.vn

https://doi.org/10.34302/crpjfst/2023.15.1.16

2 6 6 7 A

Article history:	ABSIKAUI
Received:	In recent years, custard apple fruit has been applied in food processing with
10 January 2022	various products. The purpose of this study aimed to valorize the peel as
Accepted:	organic food waste produced by fruit processing. Microwave assisted
20 December 2022	extraction (MAE) of bioactive polyphenols from custard apple peel was
Keywords:	performed at different aqueous ethanol composition, extraction irradiation
Custard apple peel;	time, solvent to solid ratio, and microwave power. Total polyphenols content
Microwave assisted extraction;	(TPC) and antioxidant activities of the extracts were investigated. Response
Polyphenols;	surface methodology was applied to find the optimal condition according to
Antioxidants;	the central composite design with ethanol concentration ranged from 50 to
Response surface	70%, extraction time from 3 to 7 min, solvent to solid ratio from 20 to 30
methodology.	mL/g, and microwave power from 154 to 274 W. A quadratic model was
	respectively developed to correlate the investigated variables to the TPC and
	radical scavenging activity by DPPH and ABTS of the extracts. Optimum
	condition was successfully selected at an ethanol concentration of 60%,
	extraction time of 5 min, solvent-solid ratio of 25 mL/g, and microwave
	power of 214 W. With a good correlation between predicted values and
	actual experimental results, the developed response surface model can be
	used to optimize the extraction of polyphenols from custard apple peel by
	MAE.