CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

SINGLE AND PARALLEL DYE-BASED REAL-TIME PCR DETECTION OF FOODBORNE PATHOGENS SALMONELLA ENTERICA AND CAMPYLOBACTER JEJUNI

Nur Areena Chin¹, Arifah Arina Syairah Janudin¹, Noor Faizah Mohd-Naim², Pooja Shivanand³, Nur Thaqifah Salihah⁴, Minhaz Uddin Ahmed¹

¹Universiti Brunei Darussalam, Faculty of Science, Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam

²Universiti Brunei Darussalam, PAPRSB Institute of Health Sciences, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam

³Universiti Brunei Darussalam, Faculty of Science, Environmental and Life Sciences Programme, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam

⁴Universiti Islam Sultan Sharif Ali, Jalan Pasar Baharu, Gadong, BE1310, Brunei Darussalam iminhaz.ahmed@ubd.edu.bn

https://doi.org/10.34302/crpjfst/2023.15.4.4

Article history:	ABSTRACT
Received: 9 September 2022	Salmonella enterica and Campylobacter jejuni are some of the common
Accepted: 10 October 2023	foodborne pathogens causing gastrointestinal illnesses worldwide. The
Accepted: 10 October 2023 Keywords: Food safety; Foodborne bacteria; Real-time PCR; Dye-based; Artificial contamination.	foodborne pathogens causing gastronnestinal innesses worldwide. The development of sensitive and specific detection methods is essential to ensure food safety. Dye-based real-time PCR assay using SYBR TM GreenER TM dye was developed for the detection of <i>Salmonella enterica</i> and <i>Campylobacter jejuni</i> . Designed primer sets specifically targeting the genes <i>ompF</i> and <i>omp50</i> in <i>Salmonella</i> and <i>Campylobacter</i> , respectively, were utilised in the study. The assay was able to detect <i>Salmonella</i> and <i>Campylobacter</i> at as low as 50 fg/µl and 10 fg/µl, respectively. Specificity analysis performed using 16 different bacterial strains to check for cross- reactivity with the respective bacteria found the assay to be specific to <i>Salmonella</i> and <i>Campylobacter</i> . The assay successfully detected <i>Salmonella</i> <i>enterica</i> in inoculated food at as low as 5 fg/reaction for some food samples. Meanwhile, the detection limit for <i>Campylobacter jejuni</i> in all inoculated food samples was 2000 fg/reaction. The coefficient variations (CV%) of the assays for both pathogens indicated that the assays were highly reproducible. Therefore, the developed real-time PCR assays for both <i>Salmonella enterica</i> and <i>Campylobacter jejuni</i> detections were specific and sensitive and can be
	used for rapid screening to detect these foodborne pathogens.