CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

OPTIMIZING THE AQUEOUS EXTRACTION OF CROCIN FROM SAFFRON AND MODELING THE KINETICS OF ITS DEGRADATION DURING STORAGE AND HEAT TREATMENT

Mostapha BACHIR-BEY^{1⊠}, Yazid KHALED KHODJA², Aicha BENBOURICHE³, Malika CHOUALI¹, Salima DJEBELLANNOUAR¹, Yassine BENCHIKH⁴, Djamel Edine KATI¹

¹Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria

² Laboratory of Exploration and Valorization of Steppe Ecosystems, Faculty of Natural Sciences and Life, University of Djelfa, PO Box 3117, Djelfa 17000, Algeria

Algeria³ Laboratoire de Biochimie Biophysique Biomathématique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria

⁴ Laboratory of Biotechnology and Food Quality, Institute of Nutrition, Food and Agro-Food Technologies, University of Constantine 1, Constantine, Algeria

 \boxtimes mostapha.bachirbey@univ-bejaia.dz

https://doi.org/10.34302/crpjfst/2024.16.2.11

Article history:

ABSTRACT

Received: September 1 st , 2023	This study aims to optimize the extraction of crocin from saffron through
Accepted: April 25th, 2024	various methods and energy levels, and to investigate its stability during
Keywords:	storage and heat treatment. Three extraction techniques-maceration,
Crocin;	microwave-assisted extraction (MAE), and ultrasound-assisted extraction
Extraction method;	(UAE)-were evaluated at different energy levels to determine the most
Degradation kinetic;	efficient method. The resulting extracts were then subjected to stability tests
Storage;	under varying storage temperatures (-12 to 35 °C) and heat treatment
Heat treatment.	conditions (100 to 200 °C). Our findings indicate that MAE and UAE,
	particularly at higher energy levels for 5 minutes, yielded the most efficient
	extraction, with an average coloring strength of 265. During storage, crocin
	degradation followed a zero-order kinetic model, with the degradation rate
	increasing with higher storage temperatures. The shortest half-life was
	observed at freezing temperature (100 hours), while the shortest half-life at
	35 °C was less than 10 hours. Similarly, during heat treatment, crocin
	degradation followed a zero-order kinetic model at 100 and 150 °C, with
	half-lives of 260 and 74 minutes respectively. At 200 °C, the degradation
	kinetics shifted to first order, with a half-life of 20 minutes. Our results
	suggest that MAE and UAE at high energy levels are optimal for crocin
	extraction, and highlight the impact of temperature on crocin stability during
	storage and heat treatment.