

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

EFFECT OF SUPPLEMENTING YOGURT WITH ESSENTIAL OIL OF LEMON LEAVES ON PHYSICOCHEMICAL AND RHEOLOGICAL PROPERTIES

Mehdia Mihoubi^{1⊠}, Meriem Mekri¹, Fatima Baghdad Belhadj¹, Lilya Boudriche¹

¹Center of Scientific and Technical Research in Physico-Chemical Analysis (CRAPC), Natural Products and Food Sciences Laboratory, BP 384, Bou-Ismail, RP 42004, Tipaza, Algéria

[™]mehdiamihoubi@gmail.com

Article history:	ABSTRACT
Received: January 1st, 2024	Citrus limon is a flowering plant belonging to the Rutaceae family. Citrus
Accepted: June 8 th , 2024	fruits constitute one of the main valuable sources of essential oil used in
Keywords:	foods and medicinal purposes. This study was designed to investigate the
Lemon leaves;	effect of adding the essential oil of lemon leaves in yogurt on its rheological
Essential oil;	and physicochemical parameters in comparison with potassium sorbate.
Elasticity;	Five batches of yogurt were prepared with different concentrations of the
Viscosity;	essential oil (0, 1250, 2500, 3750 µg/ml), one batch was dedicated to
Rheology.	potassium sorbate (0.1%) . Essential oil of lemon leaves was analyzed by gas
	chromatography/mass spectrometry (GC/MS), yogurts formulated were
	analysed by the rheometer. The GC/MS analysis allowed the identification
	of 27 compounds accounted for total percentage of 99.76%. The two
	dominant compounds were Limonene (57.96%) and β -pinene (16.29%). The
	essential oil exhibited an excellent DPPH scavenging activity with a half
	maximal inhibitory concentration an (IC50) of $2,41\pm0,04$ µg/ml comparable
	to that of ascorbic acid with an IC50 of $5,87\pm0,75$ µg/ml. pH values of
	yogurts with essential oil were significantly the highest after those of yogurts
	with potassium sorbate ($p<0.05$), which improves the acidity stability of
	yogurts during storage. The thixotropic index recorded for yogurts with
	essential oil was the greatest (3789 Pa/s for the highest concentration), while
	that with potassium sorbate was the lowest (2280 Pa/s) compared with the
	control (3329 Pa/s). The viscoelastic behaviour of the control yogurt and the
	essential oil yogurts were almost the same, the addition of essential oil did
	affect significantly the thix otropic behaviour of yogurts ($p < 0.05$).

https://doi.org/10.34302/crpjfst/2024.16.2.16