

CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

MICROWAVE DRYING OF TOMATO SLICES: AN EVALUATION OF ARTIFICIAL NEURAL NETWORK (ANN) AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) MODELS

Hussein J.B.¹, Oke M.O.^{2⊠}, Ajetunmobi-Adeyeye R.I.² and Adegoke A.F.³

¹Department of Food Science and Technology, Modibbo Adama University, Yola, Adamawa State, Nigeria. ²Department of Food Engineering, Ladoke Akintola University of Technology, Ogbomoso, Oyo

State, Nigeria.

³Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.

[™]mooke47@lautech.edu.ng

st/2024.16.3.10	pj	/c1)2/	-3(34	0.	/1	.org/	oi.	do	s://	http
-----------------	----	-----	-----	-----	----	----	----	-------	-----	----	------	------

Article history:	ABSTRACT
Received:	This study used two methodologies to model microwave drying kinetics of
December 29 th , 2023	tomato slices: artificial neural networks (ANN) and the adaptive neuro-fuzzy
Accepted:	inference system (ANFIS). The tomatoes were pre-treated with water
September 1 st , 2024	blanching (WBP), ascorbic acid (AAP), and sodium metabisulphite (SBP).
Keywords:	The tomatoes were then dried in the microwave at 90, 180, and 360 W after
Microwave Drving;	being sliced into 4-, 6-, and 8-mm thicknesses. After fitting ANN and ANFIS
Tomato Slices;	models to the experimental drying data, the optimal model topology was
ANN;	identified. The predictive accuracy of these models was assessed through
ANFIS;	these metrics: the coefficient of determination (R^2) , mean squared error
Modelling.	(MSE), root mean squared error (RMSE), and mean absolute error (MAE),
C C	by contrasting the projected results with experimental data. The results
	showed a range of 0.92 to 3.75 h for drying time, 0.28 to 2.86 x 10^{-8} m ² /s for
	D _{eff} , and 0.0027 to 0.0063 kWh/kg for SEC. The results indicated a high-
	performance capacity of ANFIS compared to ANN, with a higher R^2 of
	1.0000 and a lower MSE of 0.9999 to 1.0000, an RMSE of 1.45x10 ⁻¹¹ to
	0.00309 , and a MAE of 1.15×10^{-11} to 0.00296 . Consequently, the ANFIS
	model demonstrated superior predictive capabilities compared to the ANN
	model, achieving a strong fit with the observed data.