

CARPATHIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY

journal homepage: http://chimie-biologie.ubm.ro/carpathian_journal/index.html

EVALUATING THE IMPACT OF NON-GLUTEN MODIFICATIONS ON BREAD QUALITY: A STRUCTURAL EQUATION MODELING APPROACH

Budianto^{1⊠}

¹Chemical Engineering, Al-Kamal Institute of Science and Technology, Jakarta, Indonesia ²²budianto_delta@yahoo.com

https://doi.org/10.34302/crpjfst/2024.16.3.17

Article history:	ABSTRACT
Received:	While modifications for low-gluten bread production have been extensively
September 3 rd , 2024	reported, including the utilization of Non-Gluten Components (NGC),
Accepted:	Natural Hydrocolloids (NH), and Chemical Modification Reaction (CMR).
October 1 st , 2024	Implementing this modification remains challenging and has yet to meet the
Keywords:	expectations for bread quality (BQ). This research aims to propose a
Acylation;	measurement model for assessing the effectiveness of modifications (NGC,
Glycosylation;	NH, and CMR) on BQ. This research involved 45 bread companies in
Innovation Process;	Indonesia, and the three modifications were attempted for application.
The Maillard Reaction;	Structural Equation Modeling (SEM), with the Partial Least Square (PLS)
Phosphorylation.	approach, was employed for analysis. The findings indicate that the
	modified (NGC, NH, and CMR) variables did not directly contribute to a
	positive effect on BQ (T stat. <1.65; p >0.05). However, when mediated by
	Research and Development (R&D) the three modifications showed a
	positive impact on BQ, with respective contributions of 19.2% (NGC),
	14.6% (NH), and 12.8% (CMR). R&D had a fairly strong influence
	$(f^2>0.35)$, and 28.2% (R^2) of its indicators were understood by NGC, NH,
	and CMR. The model's suitability was deemed satisfactory, with
	SRMR<0.07; GFI>0.36; and NFI>0.9. The original contributions of this
	research lie in providing practical recommendations for the widespread
	application of modified variables and proposing conceptual a framework for
	gluten-free bread modification with R&D mediation.