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 ABSTRACT 
Sustainable agricultural production can be planned and managed with the 
use of meteorological data collected by a farming Internet of Things (IoT) 
system. However, forecasting future trends with accuracy is challenging. 
Since complex nonlinear relationships with several components are a 
constant feature of data, in this research using a deep learning predictor with 
a sequential two-level decomposition structure, in which the data of weather 
had been split into 4 components sequentially, while recurrent gated (GRU) 
served as the component sub-forecast throughout training.. As a result we 
found, the agricultural IoT system may make more precise weather 
predictions. Finally, medium and long-term prediction findings were 
produced by GRUs' results combination. The experiments for the proposed 
model were validated using data of weather through Internet of Things 
system (IoT) in Ningxia (China), to obtain the planting of wolfberries. The 
results of tests of prediction discloses the suggested predictor could obtain 
temperature & humidity predictions accurately and satisfying requirements 
of precision production in agriculture. 
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1. Introduction  

Precision farming (PF) participation, 
particularly, a social and inherently complex 
process influenced by producers, change agents, 
social norms, and institutional pressure.. An 
empirical examination of  preliminary results 
was done by (Mekonnen et al., 2019)  Italian 
farmers' research revealed the importance of 
raising public awareness about the use of 
precision farming (PF) instruments and 
suggested that future studies should concentrate 
on new ideas and tactics that promote 
environmental sustainability. The use of internet 

of thing technology in this process is a crucial 
component. Farmers will need less information 
to make decisions, as a result, raising the level 
of agriculture as a whole. Extreme weather 
condition has significant effect in growth on 
agriculture. By looking ahead and weather 
prediction throughout medium term and long 
term, preparation can significantly cut losses. 
Additionally, it serves as a guide for managing a 
farm and insurance for agriculture. 

There are several positive effects on 
environmental sustainability through the usage 
of technology like the Internet of Things (IoT) 
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and precision farming equipment. To begin 
with, precision farming allows for more efficient 
use of resources like water, fertilizer, and 
pesticide. Farmers may be able to lessen their 
environmental effects by utilizing real-time data 
to pinpoint the use of these inputs. Second, the 
Internet of Things infrastructure allows for 
constant monitoring of environmental 
conditions. This provides farmers with the 
information they need to enhance agricultural 
operations and make choices based on evidence. 
As a result, fewer natural resources are used, and 
more people are mindful of their impact on the 
planet. Soil erosion, pollution, and biodiversity 
loss may all be mitigated by the use of precision 
farming practices. Integrating precision 
agricultural equipment with IoT technology 
leads to a more sustainable and environmentally 
friendly farming system. (Priya & Ramesh, 
2020). 

Sensors can collect data thanks to Internet of 
Things (IoT) technology, which has also given 
rise to critical technologies for many different 
intelligent systems. In past few years, the very 
important IoT system, the precision agricultural 
system enables increased production, 
sustainable profitability, and higher-quality 
goods through the use of information technology 
(Bhat & Huang, 2021). 

The production, security, and safety of food 
can all be significantly improved by precision 
agriculture (Delgado et al., 2019). In order to 
make the most of energy, space, and labor, and 
to increase production efficiency, it is necessary 
to optimize resource utilization., a key area of 
study of  IoT systems used in precision farming 
is offering a particular atmosphere for efficiency 
in accordance with climatic factors such as 
humidity, temperature, etc. The medium-term 
and long terming weather forecasts accurately 
assist farmers, distributors, and regulators to 
make choices for long-term stability in the 
farming sector, which supports operations that 
improve the positive effects utilizing and 
expanding access to food on individuals, 
communities, and economies. Future analysis in 
weather and modeling techniques can aid in the 
prediction of potential agricultural management, 
assisting and directing the management of 

production toward the development of 
sustainable agriculture. 

Improved agricultural production 
forecasting is possible because of the 
employment of sustainable big data analytics 
and deep learning technology in precision 
agriculture. Sustainable big data approaches 
may be used to evaluate large amounts of 
agricultural data like as weather, soil moisture, 
and crop characteristics to get a better 
understanding of the elements that affect crop 
yield. Very precise estimates of agricultural 
production are now attainable because of too 
deep learning methods like convolutional neural 
networks (CNNs) and recurrent neural networks 
(RNNs). These methods increase prediction 
precision by accommodating a variety of input 
formats and modeling nonlinear interactions. 
The future viability of agricultural systems is 
progressively being guaranteed by the 
incorporation of sustainable techniques. These 
methods increase crop yields while decreasing 
agriculture’s negative environmental effects. 

Due to the inherent complexity of nonlinear 
interactions between the numerous substances in 
sensor data., making predictions based on 
weather data is challenging. On the other hand, 
the IoT system's ability to gather and store vast 
amounts of data due to its high sampling 
frequency allows for the Analysis of sensory 
data, the discovery of new knowledge, and the 
prediction of future insights (A. Sharma et al., 
2021). 

The challenge of prediction for gathering 
time-sequential data generated by IoT system's 
sensors has been addressed using some ways. 
Examples of techniques used to model and 
forecast time sequential data's future included 
conventional ARIMA (auto-regressive 
integrated moving averages), synthetic neural 
networks (SNN) (R. Sharma et al., 2020), 
support vector machine (SVM) & particle 
swarm optimisation (PSO) in an echo state 
network (ESN). However, these models cannot 
provide accurate predictions for the real-world 
IoT system because of the peculiarities of the 
gathered data and the lack of modelling support 
for nonlinearity.. 
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In a recent study deep learning systems 
described sufficient benefits for extraction of 
characteristics by nonlinear complex data. 
Particular neural network architectures, such as 
convolutional neural networks (CNNs) (Zhang 
et al., 2021) and recurrent neural networks 
(RNNs) and their enhanced models (Raj et al., 
2021), have been used to extract characteristics 
of time sequential datas. These architectures 
include the long short term memory system 
(LSTM), a recurrent gated unit system (GRU), 
and a bidirectional long short term memory 
(BiLSTM) network.  

For instance, newly created BiLSTM 
(Tantalaki et al., 2019) improves LSTM 
performance by feeding the network 1 step of 
data of time sequence both in forward and 
backward orientations. Amount of data that 
BiLSTM takes into account expands even 
though additional rounds of training are needed 
and there are more parameters. In addition, 
(Shakoor et al., 2019) suggested a technique 
called GRU that enhanced LSTM system by 
removing a restricting units and tests revealed 
that GRU system having made more progress 

than LSTM system even its efficient form are 
used . In order to produce a more precise long-
term prediction,(Perakis et al., 2020) merged 
conventional technique ARIMA with GRU 
system validating by using the data of Beijing 
2.5pm 

To satisfy the objectives of precision 
agriculture, the efficiency of these networks 
must be improved in order to obtain more 
precise meteorological data predictions. 
Researchers concur that the fact that the 
obtained information on the weather from the 
IoT system constantly has various components 
is one of the factors contributing to the decline 
in prediction performance. 

As an illustration, the temperature data often 
include four different types of 
substances/components including: 

1) Trend components: Primary trend axis of 
data of temperature is shown by such term. The 
linear growth and fall trend are frequently 
included in this section.  

The temperature fluctuations over a lengthy 
period of time are reflected in the trend 
component. 

 

 
Figure 1. Data about the temperature in Ningxia, China, broken down adapted from  

(X.-B. Jin et al., 2020) 
 

(2) Periodic components per day: There are 
clear period features in the temperature data, 
with a value during the day being greater and a 
value during the night being lower. 

(3) Duration components per year: There is 
another period in the temperature data that 

corresponds to the temperature cycles in the four 
seasons of the year. 

(4) Remnant component: This is the portion 
of the initial information that is left after the 
trend and period components have been 
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removed, and it typically comprises complicated 
nonlinear elements and noise. 

In the first subfigure of Figure 1a, a sample 
of hourly temperature readings from Ningxia, 
China, from January 2016 to December 2017 is 
shown. While sampling, intervals set on 1 hour 
and observation points are represented by 
abscissa axis [Figure 1]. 

Figure 1 depicts annual temperature 
fluctuations that are likely representative of 
those observed in Ningxia, China. The 
"duration" part of temperature data refers to how 
long certain temperature patterns or trends were 
found to persist. We may learn about annual 
temperature swings in Ningxia by focusing on 
the duration component. It's possible to learn 
things like the average length of the summer, the 
average length of the winter, the average length 
of time between seasons, and the average length 
of time for temperature variations. Predicting 
crop yields and scheduling agricultural 
operations within the framework of precision 
agriculture benefit greatly from the knowledge 
of seasonal trends and temperature fluctuations. 

 Figure 2: The second subfigure's trend 
component during this time, 1b) is between 
approximately 10 and 17.5 degrees. Figure 1c, 
the third subfigure, displays periodic element in 
per 24 hours. We observed that variation in 
temperature during day shows a clear periodicity 
of every day. We display data for a period of 10 
days, or roughly 240 hours, to vividly depict the 
time each day lasts. According to the graph, the 
temperature starts to climb in the early morning 
hours and starts to fall afternoon. 

However, the bottom subfigure of Figure 1d 
depicts the period per year where the four 
seasons' apparent variations may also observed. 
Average of summer temperature higher than 
average of temperature in winters. 

 As a result, there are two times throughout 
the whole year when temperature changing: 
during change from day to night and during the 
four seasons. Similar patterns of change can be 
seen in further climate information, likewise 
related humidity. 

Figure 1: Data about the temperature in 
Ningxia, China, broken down adapted from 

(X.-B. Jin et al., 2020) 

Research have demonstrated about 
breakdown is such an efficient way to 
developing prediction since network still are 
unable to extracted the complicated non-
linearity of that multicomponent analysis. So, 
data are divided in several substances that lessen 
complexity.(Islam Sarker et al., 2019) applied a 
decomposition method for seasonal data 
breakdown for easier analysis and interpretation. 
In order to assess a trend's potential impact on 
variations in pollen counts, comparing to 
observed variations in land usage as one moves 
out from the city. The decomposition technique 
proved to be quite successful in separation of 
trend component from   data of time sequence. 
By using the decomposition method, Jess et al. 
(Fenu & Malloci, 2020) pollen concentration 
sequencing data was split up into residual and  
seasonal groupsThe residuals were then fitted 
using partial least squares regression, and a 
time-sequential model of airborne pollen was 
developed to predict the daily intensity of pollen 
The pattern in the corrected time series data was 
estimated by (Bhakta et al., 2019) using 
maximum likelihood estimation, which 
increased the forecasting data accuracy. 
(Palanivel & Surianarayanan, 2019) LOESS 
(STL)-based trend decomposition seasonal 
processes were linked with echo state networks 
(ESN), for the predicted flow of passenger and 
two passenger flow prediction applications 
depends upon railway and air data, they carried 
out to assess efficiency and feasibility of method 
capability of the suggested methods. 

We continued in this deconstruction process, 
and the following are our novel contributions: 

(1) To determine the data's periodicity per 
day and per year, we deconstructed the data 
using a sequential two-level structure according 
to the properties of weather data.  

(2) Sub-predictors are created based on four 
GRUs for decomposed trend, period, and 
durations, and we provide a basic forecasting 
framework for IoT that produce reliable forecast 
of weather information, this may better extract 
the weather data's periodic properties, reduce the 
breaks down complexity of components, and 
boost the accuracy of forecasts. By reducing the 
input and output dimensions and extending the 
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forecast to the following day, results of the sub-
predictions combined to produce an reliable 
hour forecasting of humidity & temperature for 
following day per hour. This was done using the 
pick-up-data method. 

Here is how the rest of the essay is organized 
as: the research goal is demonstrating in [Section 
2], along with the experimental data. In Section 
3, the predictor is put forth, particularly the two-
level decomposition and structure of the model 
of prediction. The experiment findings are 
shown in Section 3, along with data of humidity 
with temperature from a wolfberrys planting in 
Ningxia, China. The findings support the 
usefulness of the proposed framework. The 
paper is summarized and concluded in Section 
4. 
1.1 Literature Review 

Convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs) are two deep 
learning approaches that might improve crop 
production prediction models used in precision 
agriculture. This is because these networks are 
better able to pick up subtle connections and 
trends in agricultural data. In the context of crop 
monitoring and disease diagnosis, CNNs excel 
in extracting useful characteristics from satellite 
shots or plant images. However, RNNs are 
especially well suited to the job of properly 
projecting crop growth and production based on 
past data from weather and sensors because they 
can consistently identify temporal correlations 
in time series data. Precision agriculture relies 
on accurate predictions, and deep learning 
methods facilitate the handling of huge and 
diverse datasets necessary for such applications. 

Many different technologies, such as the 
Internet of Things and machine learning, are 
being used to develop tools like data analysis 
and decision support systems., has already 
resulted in a great deal of activity in field of 
precision agriculture. Following are the three 
sections into which we separated the literature 
review:  

1) IoT/sensor network. 
2) Data analysis application for Internet of 

Things. 
3) Data analysis as smart systems in 

agriculture.  

In the subsections below, the literature's 
contributions to precision in many domains are 
covered in detail below: 
1.1.1. IoT/Sensor Networks 

Wireless sensor networks are used in a wide 
variety of agronomic uses such as remote 
monitoring of soil and environmental 
parameters to predict crop health. A schedule for 
agricultural irrigation 

By using WSN as an observer of 
environment factors such as 1) stress, 2) 
humidity, 3) temperature, 4) soil wetness, 5) soil 
salinity, and 6) soil conductivity, fields are 
projected. Numerous studies have been 
conducted, and the major contributions of 
numerous scholars are highlighted in the 
literature. The scalable network design was 
suggested by authors in (Dakir et al., 2022) as a 
way to monitor and manage crops in rural areas. 
They suggested control system depends on 
Internet of Things  for the advancement of 
agriculture and farming. All the system upgrades 
and parts are looked at and scrutinized from 
every angle.Energy efficiency, reduced latency, 
and high throughput were all achieved by the 
routing and MAC solution in the IoT.The system 
combines a fog computing solution with a 
wireless internet-enabled long-range (WiLD) 
network to achieve this performance. For the 
purpose of setting up a data collection system for 
identification of Apple Scab using tables of 
Mills in Indian state (Himachal Pradesh), 
authors of (El Hachimi et al., 2021) presented a 
WSN framework design. Internet of Things was 
implemented in farming to boost harvests, 
improve product quality, and reduce costs. They 
suggested and created a method that can 
optimally irrigate agricultural products, 
including homegrown veggies and lemons, 
through wireless sensor networks. The system 
proposed has three primary components that 
work together to regulate the impact of 
environmental conditions in crop fields. Web 
application, mobile application, and hardware 
(control box). The control box, which assisted in 
data collection, turned out to be a WSN and 
computerized control system. Large-scale data 
was gathered from the control box using a web 
application, and data mining association rules 
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were used to evaluate it. The farmer was 
informed via the mobile application of the soil's 
moisture content, and if necessary, either 
automated or manual watering was carried out. 
According to data mining, the ideal temperature 
and humidity for homegrown lemons and 
veggies are 29°C and 72°F, respectively. There 
are several ways in which agricultural output 
and efficiency might be enhanced by the use of 
sustainable big data analytics and deep learning 
technologies to the problem of predicting crop 
yields. There are several routes to actualizing 
these possibilities. To begin, technological 
advancements have made it simpler to filter 
through mountains of varied agricultural data in 
search of patterns and insights that might lead to 
better agricultural practices. In order to 
accurately predict crop yields, deep learning 
techniques like convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) 
are superior. Thirdly, farmers may be able to 
better manage their resources and produce less 
waste than they did in the past by utilizing IoT 
technology to gather and analyze data in real-
time. Furthermore, sustainable big data analytics 
need to encourage the adoption of green 
agricultural techniques. This will aid in reducing 
farms' carbon footprints, making them more 
self-sufficient. Long-term, these developments 
might boost agricultural yields, resource 
utilization rates, and precision agriculture 
profits. The Smart node system, which has been 
developed by the authors of (Ayoub Shaikh et 
al., 2022) , is a precision agriculture system that 
is cost-effective. They used an infrastructure of 
software and hardware that enables the 
monitoring of agroclimatic factors for the best 
possible crop development. To boost the crop's 
yield, they installed the system in the field. The 
important purpose was using a framework to 
notify farmers when downy mildew illness in a 
vineyard context would be best treated. Senviro 
system has developed for grape field 
monitoring, adhering to IoT. They reduced 
communication between endpoints by utilizing 
the edge computing paradigm. The authors of 
(Elavarasan & Durai Raj Vincent, 2021) 
demonstrated the unreliability and expense of 
the current systems. Information on using the 

Internet of Things and machine learning in 
precise farming for disease prediction was 
offered. They suggested a system concept that 
included IoT and machine learning. They used 
environmental sensors, such as those for 
temperature and humidity, to gather data. The 
finished product was generated and then sent as 
an SMS to the nearby farmers. In (Zeng et al., 
2022), the authors reviewed agricultural WSN-
based applications. Different wireless 
communication technologies including Wi-Fi, 
Bluetooth, GPRS, Lora and ZigBee etc were 
compared by the authors. Because of their 
acceptable range of transmission and minimal 
energy requirements, they demonstrated that 
wireless communication technology like LoRa 
or ZigBee are particularly effective when used 
for Precision Agriculture. There is a 
categorization of numerous methods and 
techniques for maximizing the efficiency of 
wireless sensor network in terms of energy use. 
The methods that can be applied in PA have also 
been described. Also discussed are the 
difficulties and restrictions faced by WSNs in 
PA. Coupled machine learning techniques 
alongside the Iot that demonstrated how these 
techniques could be used in next-generation 
networks.They created a Public Safety IoT 
ecosystem represented as (PS-IoT) by 
combining the use of Unmanned Aerial Vehicles 
(UAV) and Wireless Powered Communication 
(WPC) to increase the utilization of energy in 
NOMA. A creative service process based on the 
IoT cloud computing platform and can help 
accelerate computing in the IoT and improve 
cloud-to-physical network connectivity. This 
study applies cutting-edge platform 
technologies to the cloud agriculture platform. 
Even in the face of scarce network data, farms 
can be connected and automated with tools like 
automated crop monitoring and picture analysis 
for pest management, through the application of 
cloud integration to vast area data collecting and 
Analysis, authors described an IoT system 
depends upon the design of a unique sensor 
called it as “NPK” Nitrogen Phosphorus 
Potassium sensor consisting of Light Dependent 
Resistor and light-emitting diodes. To monitor 
and assess the soil's nutrient status, a 
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colorimetric method is used. The information 
gathered from fields is kept in a Google Cloud 
database for quick retrieval.  

Python is used to build hardware and 
software designed to work together for 
microcontroller on the Raspberry Pi 3. The 
suggested model has been tested on three 
distinct types of soil including red soil and soil 
of dessert as and mountains. The devised system 
produced change proportional to the 
concentration of the soil solution. The use of SN 
is creating the usage of Qualnet simulator in 
order to examine the NPK sensor performance. 
When compared to existing alternatives, the 
built IoT was proven to be the most beneficial to 
farmers so that they can grow crops with a high 
yield 

The most significant IoT applications have 
been recognized by researchers, and a thorough 
survey has been conducted with a focus on 
precision agriculture. 

Issues encountered when utilizing IoT in 
smart farming. To examined protocols, 
techniques, and applications in the IoT, an 
emerging field. New taxonomies for Iot of 
Things technologies are mentioned in the article. 
It brings to a close the most important 
technological advancements that have the 
potential to significantly improve people's lives, 
particularly those of the old and the disabled. 
This work has thoroughly and exhaustively 
explored significant techniques, transitioning 
from sensors to software, in comparison to 
similar survey papers. Authors have suggested a 
survey of the most important historical 
architectures in (Roberts et al., 2021). In 
addition, the necessary component technologies 
to fulfill IoT application needs are broadly 
acknowledged.. They give a classes that shows 
how well-suited the suggested designs are for 
IoT features. Additionally, they have 
emphasized the benefits of current approaches 
and suggested new directions depends on 
current art state. In a further investigation, they 
hope to devise a plan to remedy the IoT's 
problems at each of the Internet's tiers. The use 
of WSN-connected innovative sensing and 
communication devices in agronomy 
applications is heavily stressed. To investigate 

the current remedies suggested in the literature, 
they cited various case examples. In the 
literature review, it is highlighted how precision 
farming has been used all around the world, 
including in India. By presenting (K & R, 2021) 
future approaches using cutting-edge 
technologies, they have illustrated the 
shortcomings of these current solutions. Authors 
examined the IoTuses  in agricultural precision. 
They monitored the greenhouse on-site using 
wireless communication equipment. They 
suggested (Andronie et al., 2021) a wireless 
remote monitoring device for greenhouses. 
System management has been considered in the 
design of an information management system. 
Research has made use of field data. The 
wireless monitoring system accurately sensed 
greenhouse field data, which is “humidity and 
temperature”, and after doing the necessary 
research, the system produced good conditions 
for vegetable growth. Performance and 
reliability have both risen as a result of the 
suggested solution. The system's user interface 
was simple enough for regular farmers to utilize. 
An approach for effective crop monitoring for 
agricultural fields. Data may be kept and 
accessed from anywhere with IoT applications. 
Several sensors are employed to track and gather 
data on field conditions (Ukhurebor et al., 2022). 
Through GSM technology, the farmer is 
supplied with information about the state of the 
farm as a whole. The sensor component of the 
proposed effort is restricted to crop monitoring 
alone. The authors' study has concentrated on 
gathering data using different technologies from 
agricultural fields. WSN, IoT, forecasting 
devices, cellphones, aerial vehicles, and imaging 
equipment were all found to be useful during 
their investigation.. Additionally, the authors 
improved the IoT platform known as 
SmartFarmNet. This was capable of analyzing 
the field data gathering for a number of different 
characteristics, including soil, water, 
temperature, irrigation, soil moisture and 
fertility. The given approach can link  data that 
had been examined and predict crop status. How 
have German farmers been able to accept 
precision farming utilizing modern technology 
like smartphones? According to a regression 



Parashar and all / Carpathian Journal of Food Science and Technology, 2023, Special Issue, 1-18 

 8 

study, precision agriculture has a good impact 
on farmers. The authors have provided several 
recommendations for future IoT-based 
agricultural research. 
1.1.2. Data analysis applications for IoT 

Before the age of computers and the 
Internet,, several conventional techniques were 
used, such as manual crop disease and pest 
detection and statistical computations to 
analyses  amount and forecast crop production 
and loss. Which is typically difficult, and as 
inspectors lack experience, this leads to human 
mistakes. Technology has the capacity to learn 
from experiences thanks to machine learning. 

We can extract the most significant findings 
from the vast amounts of crop field data using 
data analytics and machine learning. It makes 
hidden patterns and connections between factors 
impacting horticulture, such as temperature, soil 
salinity, and humidity, apparent. Artificial 
Neural Networks (ANN), logical Regression 
(LR), Support Vector Machines (SVM) are most 
commonly using machine techniques for 
prediction of diseases of crops when weather 
data is analyzed. Using machine learning 
classification techniques, writers in proposed a 
system for classifying apple illnesses. They use 
photos of apple tree leaves as their input to 
classify two diseases: apple scab and marsonina 
coronaria. 

The simulation system proposed was 
simulated using MATLAB 2016. They 
demonstrated that the K nearest neighbour 
accurately classified illnesses with an accuracy 
of 99.23%. This system was created in 
Uttarakhand (Himachal Pradesh). The authors of 
(Jung et al., 2021) demonstrated the unreliability 
and expense of the current systems. They 
provided information on how to use IoT to 
anticipate crop illnesses. They suggested a 
system concept that included IoT and machine 
learning. They used environmental sensors, such 
as those for temperature and humidity, to gather 
data. The finished product was generated and 
then sent as an SMS to the nearby farmers. 
Intelligent machine learning techniques have 
been applied to enhance quality of service of 
constrained wireless technology. Sensor devices 
placed in farm fields that provide data to a 

central gateway were used to collect 
environmental characteristics, including 
temperature and humidity. The information 
gathered aids in identifying the severity and risk 
of bloom. 

In order to anticipate the site-specific yield, 
writes in utilized image processing and 
information analysis techniques for precision 
agriculture. They demonstrated that there's a 
strong relationship between blossom density and 
fruit output by accurately forecasting the apple 
orchard's yield with a rate of more than 79.8%. 
Five on-site weather stations that gather data 
have been set up in orchards. The gathered 
information can be incorporated into models to 
forecast the times of apple scab infection. These 
models can assist farmers in determining if 
fungicide applications to manage apple scabs are 
necessary (or not). They published the data on 
http://www.pomosat.ro so that Romanian apple 
growers in the area could approach and using it 
to inform their decisions. The suggested model 
is based on time series prediction and artificial 
intelligence. Instead of adding up the length of 
wetness, the apple scab infection period was 
considered as the time series prediction model. 
Utilizing feature selection techniques, 
significant hours were identified. Fisher's Linear 
Discriminant Analysis, Pearson's Correlation 
Coefficient, and Adaptive Neuro-fuzzy 
Classification with Linguistic Hedges. 

The model of an adaptable neural network 
performed the prediction. Measurements must 
be taken for 24 hours in order to establish the 
severity of the apple scab infection. Relative 
moisture, leaf wetness, temperature, daylight 
hours, and rainfall are five meteorological 
metrics. Data was gathered every 12 minutes, so 
time was included as a further variable for time 
series prediction. They noted a connection 
between meteorological readings and apple 
scabs. 

DSS was able to calculate the exact amount 
of fungicide to use. In addition, weather-related 
IoT sensors were set up to gather real time data, 
then forwarded to process on an IoT cloud 
system. For the purpose of forecasting late 
blight, the weather data collected by weather 
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monitoring stations was incorporated into the 
model for the forecast. 

For farmers, the approach proved quite 
effective and economical. By using sensory 
systems, authors of aimed to arrange 
heterogeneous data coming from various 
sources into datasets. They also demonstrated 
the value of businesses' efforts to increase 
profitability, whether they are large or small, 
public or private. 

The best chance of achieving goals is to learn 
how to use continuously gathered data in the 
right manner. It suggested the usefulness of 
machine learning, neural networks, and 
regression analysis in making decisions. The 
value of smart phones in agronomy for 
collecting data on a wide range of variables, 
including moisture in soil, moisture in air and 
temperature etc. The benefits of smartphones in 
the agriculture sector are mentioned in the same 
article. To find out what the farmers desired, the 
writers interviewed and administered 
questionnaires to 230 or so of them. They 
reached the conclusion that farmers are 
interested in using smartphones to obtain 
information on recent farm data after completing 
the process. 
 
1.1.3. Data Analysis as smart systems in 
Agriculture 

Internet of Things  is crucial for gathering 
information in real time in precision agriculture. 
Improve farming methods through the use of 
real-time data collected from crop fields, nodes 
of IoT sensors can make the system more useful 
system exact. The agriculture system is made 
more practical by adding data analytic. These 
technologies are all quite useful in different 
industries. To keep farmers up to date on the 
status of their crops, a variety of applications are 
being developed for them in precision 
agriculture. Generally, there are three main 
stages in a precision agricultural architecture, 
soil and plant health, as well as other physical or 
environmental parameters can be monitored by 
many sensors and Internet of Things nodes are 
used in the first stage. For example, a soil 
moisture sensor records soil wetness readings, 
and a soil nutrient sensor evaluates the soil's 

fertility. Data is collected precisely in second 
stage. Depending on the requirements, Data can 
be sent to the cloud for more complex 
processing and remote monitoring, or it can be 
stored locally at the nearest fog node. The last 
stage of the design employs analytical 
techniques to determine the condition of crops 
field. The end users (farmers) are then informed 
of this information, which enables them to 
determine whether the measurement is either 
below or above the thresholdAs a result, they 
initiate contact with the actuator that activates 
the watering system. Alternatively, the farmers 
balancing the fertility of soil by sprinkling the 
organic fertilizers. Upon detecting 
(sensing/predicting) any critical scenario, an 
activation mechanism using actuators and 
analytics is triggered. 

 

Figure 2. Precision Agriculture Model adapted 
from (Raj et al., 2021) 

 
There are several Internet of Things 

applications in precision agricultural system, 
some of which are listed here. Precision 
agriculture uses are depicted in Figure 2. 

Figure 2 depicts an Internet-of-Things 
system that relies heavily on a deep learning 
algorithm to predict future temperatures and 
humidity levels based on historical data. The 
algorithm is "trained" using a massive database 
of past temperature and humidity readings. All 
of this "training" is done using archived 
information. Due to the training process, the 
algorithm is able to learn new insights into the 
data. Once the algorithm has been trained, it will 
be able to generate real-time predictions based 
on data collected by the temperature and 



Parashar and all / Carpathian Journal of Food Science and Technology, 2023, Special Issue, 1-18 

 10 

humidity sensors that are part of the IoT system. 
The system's use of deep learning methods 
allows for a more thorough comprehension of 
the interdependencies between the variables, 
leading to more precise predictions for 
application in precision agriculture. 

 
2. Metodolog 
2.1. Research Objectives and Data 
Description 

In China's Ningxia province, a wolfberry 
farm started using IoT technology. The province 
of Ningxia is home to a significant portion of 
China's wolfberry crop. Currently, Ningxia has 
a planting area of 1 million mu or 33% of the 
country's entire land area. 

Environmental elements, including 
temperature, humidity, and others, have a 
significant impact on the survival and 
development of wolfberry plants. 
Understanding and predicting these 
meteorological elements is crucial to the 
function and effects of wolfberry precision 
agriculture. 

In order to improve the accuracy and 
reliability of crop production prediction models, 
precision agriculture makes use of massive 
amounts of agricultural data. More precise 
estimates of agricultural output are possible 
because of the models' ability to collect and 
evaluate the complex correlations and patterns 
resulting from a wide range of inputs such as 
weather patterns, soil conditions, and crop 
growth characteristics. This allows them to 
boost agricultural output by improving decision-
making, resource allocation, and other related 
processes. 

The planters can modify their planting and 
picking schedules in accordance with weather 
predictions, take full advantage of the region's 
abundant natural resources, and continue the 
planting industry's sustainable growth. 

The IoT for precise agriculture is depicted in 
Figure 2. Sensors, such as an overview of the 
surface, a machine, a control unit, and an irrigate 
actuator, make up the majority of the IOT 
system. Our IoT system includes a wireless, 
battery-operated temperature and humidity 
sensor because of outside planting. This system 

will gather temperature and humidity data, 
which will then be sent to computer for archival. 
Additionally, a sizable amount of previously 
collected information was utilized for training 
the deep learning algorithm in order to provide a 
precise forecast of future humidity and 
temperature. The display board's primary 
purpose was to show the current weather. The 
irrigation actuator was controlled by the 
controller. 

The following two words predictions are 
required for the prediction outcomes 
application-specific considerations  

(1) Short-term prediction: giving reliable 
humidity and temperature forecasts in next 12 
hours 

 (2) long term prediction: forecasting the 
next 30 days' worth of average daily 
temperatures as well as humidity levels. 

To guarantee the efficient use of water 
resources, the former is utilized to direct the 
irrigation plan for the following day. Automatic 
irrigation can be performed by using irrigation 
control, the timing and amount of which are 
dynamically decided based on precise humidity 
and temp prediction for the period of 24 hours 
that follows. 

Then last one make use to organize picking, 
harvesting and other activities. These strategies, 
which are based on precise weather predictions, 
can increase agricultural sustainability. 

 

Figure 3. The Internet of Things is used for 
data collection and forecasting in precision 
agriculture adapted from (X. Jin et al., 2020). 
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2.2. Structured Model 
The structure comprises 3 components: 

combination, prediction, and decomposition. 
Figure 3 depicts the Framework for prediction. 
Four distinct categories were extracted from the 
raw data using a two-level decomposition 
method. Then, every part was handled 
differently to produce various GRU sub 
predictor during network training and employed 
at prediction stage to forecast the various 
components. The final projected outcomes were 
then obtained by combining all the predictions 
and placed in the output node. 

 

Figure 4. Structured flowchart for making 
forecasts adapted from (X.-B. Jin et al., 2020) 

 
The decomposition method may be used to 

effectively separate continuous meteorological 
variables like temperature and humidity into 
distinct subcomponents, as shown in Figure 4. 
Temperature and humidity are two such 
examples. Periodic patterns and cycles are 
captured by the period component (PDt), 
whereas trends are represented by the trend 
component (TDt). The residual component 
(RDt) captures this kind of random or 
unexpected data fluctuation that is independent 
of both the trend and the time period. 
 
2.3. Two-Level Decomposition Sequence  

The underlying time series data was divided 
into two levels sequentially. Twenty-four hours 
were used as the trend, daily period, and residual 
were identified using first-level decomposition.  

Since the first-level decomposition's residue 
still exhibited periodicity, we applied The 
remainder split into three more components 
using second-level decomposition. 

The division of the node in Figure 3 is 
depicted in further depth in Figure 4. First-level 

decomposition was used to partition 
meteorological variables like temperature and 
humidity into three sub-components: 1) the 
trend (TDt), the period (PDt),the residual (RDt). 
The residual (RDt) was then further broken 
down into (TYt), (PYt), and (RYt). 

 

Figure 5. The structure of sequential two‐level 
decomposition adapted from (X. Jin et al., 

2020) . 

2.4.Decomposition First Level 
At the first level of decomposition, the trend 

component (abbreviated TDt) is extracted using 
a mean regression strategy. This is done so that 
the dominant trend in the time series may be 
represented faithfully. The raw data (Dt) may be 
subtracted from the trend component (Tc) to 
provide the period component. The result is the 
period difference (PDt). Any points between 1 
and n may be used to get the first-period curve. 
You may use this curve to make estimates for 
the beginning of the era. Each of the twenty-four 
data points must be multiplied by the total 
number of time periods, then the sum of these 
products must be added together and finally, the 
sum is divided by the total number of time 
periods. By using this method, we are able to 
detect and provide an explanation for recurrent 
patterns in the data. 

Time sequential data Dt is assumed to 
contain N observations, where t can take on the 
values 1, 2,.., N. The relationship between Yt 
and its three constituents—the trend, the period 
per day, and the residual—as depicted in 

 
Dt =TDt  +  PDt + RDt t + N (1,2,….)  (1) 
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Where as the trend is denoted by TDt, period  
day is denoted by PDt,  residual is denoted by 
RDt. The process of decomposition is given 
below: 

• Set the period on 24 hours/day, 
which means 24 sample data 
collected. Calculate period’s 
numbers by N/24. 

• The general trend in the time series 
data can be reflected by extracting 
the trend TDt using the mean 
regression approach.  

• Calculate component of period first 
from data by (XDt = Dt – TDt) to 
estimate initial period component. 2) 
Then selecting points from first to 
last number by multiplying twenty 
four in (XDt), add the data at the 
same time and divided by number to 
obtain first curve of period, then 
copying the Number of times and 
considered the difference of the 
(Number multiply by24) and (N) by 
obtaining (PDt). 

• Calculate residual component (RDt) 
by given equation as follows 

RDt = (Dt - TDt – PDt) 
Time series data (Dt) is related to its trend 

(TDt), period per day (PDt), and residual (RDt) 
in Equation #1. The value of Dt, also known as 
the observed data, is calculated by adding these 
three numbers together, as shown in the formula. 
The period per day component (abbreviated as 
PDt) shows daily fluctuations, while the trend 
component (abbreviated as TDt) shows the 
overall trend in the data. Variations not 
explained by the daily trend or the period are 
attributed to the residual component (RDt). By 
breaking down the time-sequential data into its 
three constituent parts and analyzing them 
independently, the framework provided by 
Equation #1 may be utilized to improve one's 
understanding of the observed data. 

 
2.5. 2nd Decomposition Level 

We applied same strategy using the already-
decomposed data.In above calculations we 
simply calculate the mean values of per day. 
Equation that derived the relation between 

residual component (RDt) with its independent 
components; trend (TYt), yearly period 
component (PYt), Residual component (RYt) 
are as follows:  

RDt. = TY + PYt + RYt  (t=1,2,….., N) 
The process of decomposition is given 

below: 
• Set the period on an year. 365 days 

in year multiply by 24 hours we get 
8760 hours in year. Then calculate 
periods number by N divided by 
8760 [N/8760] 

• The overall trend in the time series 
data can be reflected by calculating 
the component of trend (TYt) using 
the mean regression approach.  

• Calculate component of period from 
data by (XYt = RDt – TYt) (ii) Then 
selecting points from 1st to last 
Num*8760th in (XYt), add the data 
at the same time and divided by Num 
to obtain one curve of period, then 
copying the Num times and 
considered (XPYt) 

• In this step we calculate the mean 
values of each day (each 24 
hours).You can get the N-point and 
period component PYt by 
substituting the new point data, 
XPYt.  

• Calculate component of residual 
(RYt) by given equation  

• RYt = RDt – Tyt - PYt. 
 
2.6. Predictor for Deep Learning 

As the trend element Tt, two trends, (TDt) 
and (Tyt) were added. Four components, 
residual (RYt), the time duration per day (PDt), 
the timeframe per year PYt, and were utilized for 
(GRU) systems. These three components are 
being the period per day (PDt), residual RYt, 
timeframe per year PYt. 
2.6.1. Sub-Predictor GRU 

This network consists of different GRU 
cells, and we set the number of layers as 2. 
Shown as Figure 5, St, t = 1, 2, …, n is the input 
of the GRU network, and St+n , t = 1, 2, …..n is 
the output.  



Parashar and all / Carpathian Journal of Food Science and Technology, 2023, Special Issue, 1-18 

 13 

The gate is used by GRU to regulate how 
much of the preceding moment's state 
information is incorporated into the current 
state. The relationship between data input and 
output was modeled using the updating gates 
and the reset gate. Each GRU cell's forward 
propagation formulae are following, 

Figure 6. The organizational framework of a 
GRU network adapted from (X.-B. Jin et al., 

2020). 

In Figure 6, we can see how GRU networks 
employ updating gates and reset gates to 
symbolize the connection between input and 
output data for the purpose of weather 
forecasting. To what extent previous state data 
should be used to inform the present state is a 
function of the updating gate (zt). The level of 
forgetting the previous state is controlled by the 
reset gate (rt). The GRU network can constantly 
adjust the parameters of these gates to update 
and retain essential information, allowing it to 
capture intricate relationships and patterns in the 
meteorological data. This makes it possible to 
always have the most recent data available. This 
gating mechanism enables the GRU network to 
provide a very accurate description of temporal 
dynamics. 

Where each GRU cell's input vector is 
represented by dt and R, and current hidden 
node's updated gate, reset gate, and finalist state, 
and current visibility status of a hidden node that 
is active are represented by zt, rt, ht, and ht, 
accordingly. 

U and W are the load matrices that are 
learned by the model over the course of its 
training; b is the element-wise multiplication of 

the bias vectors; and tanh are the activation 
functions. 

In order to forecast these four factors, four 
GRUs were developed as sub-predictors: the 
There is the trending part (Tt), the daily part 
(PDt), the yearly part (PYt), and the leftover part 
(RYt). In the long run forecasting, we set n to 30 
and define St as the time frame per year (PYt) 
component. For medium-term forecasting, St 
uses the remaining three components, and n is 
set to 24. In other words, we forecasted data for 
upcoming twenty-four hours using the historical 
data from previous 24 hours. This technique can 
be used in other disciplines as well as other 
signal control and modeling systems and 
integrated with other system recognition 
techniques to examine the simulation and 
forecasting of other fluid time series and random 
systems. 

In order to improve the accuracy and 
reliability of crop production prediction models, 
precision agriculture makes use of massive 
amounts of agricultural data. More precise 
estimates of agricultural output are possible 
because of the models' ability to collect and 
evaluate the complex correlations and patterns 
resulting from a wide range of inputs such as 
weather patterns, soil conditions, and crop 
growth characteristics. This allows them to 
boost agricultural output by improving decision-
making, resource allocation, and other related 
processes. 

 
3. Results and Discussions  

Root Mean Square Error (RMSE) values 
that are close to zero indicate that the proposed 
model is very accurate in predicting future 
temperatures and humidity levels. Smaller 
values for the root-mean-square-error (RMSE) 
indicate better agreement between the predicted 
and observed values. The suggested model 
outperformed RNNs, LSTMs, BiLSTMs, and 
GRUs, as shown in the results and comments 
section. The suggested model has RMSEs for 
predicting both temperature and humidity of 
around 20.34 and 2.04 percentage points. These 
reductions in RMSE show that the suggested 
model is a more precise forecaster of future 
weather conditions than the baseline model. 
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The data collected hourly data on humidity 
and temperature with around 35,040 samples 
were utilized for training the model. In the tests, 
the split between training and testing data was 
80:20. 

The proposed prediction model was 
executed in the experiment's hardware and 
software environments. All learning models 
were created using the TensorFlow-based free 
deep learning framework Keras. On a computer 
with an Intel (CORETM 4200U i5 CPU) 
running at 1.60 (GHz) and (4 GB) of memory, 
all trials were conducted. Deep neural networks 
were initialized in experiments using default 
Keras parameters, such as weight initialization. 
Furthermore, the GRU model's activation 
functions were ReLu and tanh. 

Typically, when building models with 
neural networks, the dimensions of the network 
topology and the total amount of neurons are left 
vague. Instead, the data are used to determine 
how complex the model structure should be. 
Through numerous experimental changes, we 
established the parameters for every component 
of the model. We utilized the ReLu function 
specifically. The result of the model's scale 
determines how many neurons per layer are 
used. There were two layers of GRUs, with 30 
neurons in the first layer, 30 neurons in the 
second layer, and 24 neurons in the other GRUs. 
In addition, the Adam technique was used to 
systematically improve an existing objective 
function to give model parameters during the 
supervised training phase for all models. 

There are many challenges that must be 
surmounted before precision agriculture can be 
used to reliably anticipate crop yields, including 
the need for real-time analysis, the scarcity of 
data, the complexity of agricultural data, and the 
inherent unpredictability of agricultural data. By 
effectively processing and analyzing massive 
amounts of data from several agricultural 
sources, such as information on the climate, the 
soil, and the crops being cultivated, sustainable 
big data analytics may be able to help identify 
answers to these difficulties. When data from 
Internet of Things (IoT) devices are combined 
with satellite photography, a more complete 
picture of the state of agriculture may be painted. 

Mining this data for useful insights using state-
of-the-art analytic methods like deep learning 
has the potential to increase the precision of 
yield predictions. Data-driven decision-making 
receives a boost from sustainable big data 
analytics, which in turn allows precision 
agriculture to maximize yields while 
minimizing waste. 

 
3.1. Other Predictors Comparison 

In this study, we compared the proposed 
model to eight existing models, including 
RNNs, LSTMs, BiLSTMs, GRUs, and seasonal 
trend decomposition algorithms utilizing loess 
(STL) [19] using RNNs, LSTMs, BiLSTMs, and 
GRUs as the sub-predictors. Root-mean-square-
error (RMSE) is a way to quantify how far off a 
model's forecast is from the actual data in order 
to assess how well that model performs as a 
predictor. 

Where N representing the total number of 
prediction datasets, obs (x) represents the data 
gathered, and pre x represents the predicted 
value. 

 
Table 1. Root mean square errors (RMSE) of 
predictions made using various predictors are 

compared 
Model (RMSE) of 

Temperature 
predictions 

(RMSE) of 
relative 

humidity 
predictions 

RNN 2.6710 14.1084 
LSTM 3.0011 14.3347 

BiLSTM 2.9989 14.1988 
GRU 3.0104 14.6015 

STL_RNN 2.7999 13.9102 
STL_LSTM 2.5015 13.5925 

STL_BiLSTM 2.4345 14.0025 
STL_GRU 2.6781 14.2678 
Proposed 

Model 
2.5547 13.2897 

 
RMSE compares the projected outcomes of 

the (RNN), (LSTM), (BiLSTM), (GRU), 
(STL_RNN) (STL-based RNN), (STL_LSTM) 
(STL-based LSTM), (STL_BiLSTM), 
(STL_GRU), and GRU-based bi-level 
decomposition. Decomposed models do 



Parashar and all / Carpathian Journal of Food Science and Technology, 2023, Special Issue, 1-18 

 15 

substantially better than undecomposed ones 
when comparing prediction results, and the one 
being suggested forecasts results more precisely 
than existing models. When compared to the 
GRU and STL_LSTM models, the RMSEs for 
the proposed model's predictions of both 
temperature and humidity are roughly 20.34% 
and 2.04%, respectively. 

The RMSEs for temperature, on the other 
hand, are 8.61% and 2.19% smaller, 
respectively. The results show that the RMSEs 
may be significantly reduced by using the GRU 
as the sub-predictor, indicating the efficacy of 
the newly developed two-level decomposition.  

When comparing the RMSE for temperature 
and humidity forecasts, the proposed prediction 

model outperforms previous models like RNNs, 
LSTMs, BiLSTMs, and GRUs. The suggested 
model's RMSE value for temperature forecasts 
is about 8.61% lower than the findings generated 
by other models. Humidity forecast RMSE 
estimations are similarly reduced, by around 
2.19 percentage points. These results suggest 
that the suggested model outperforms the state-
of-the-art models when it comes to forecasting 
future temperatures and humidity levels. 
Evidence that the suggested model and the 
newly generated two-level decomposition are 
successful may be seen in the declining RMSE 
values. 

 

 
Figure 7. The (RMSE) histogram for temperature and humidity forecasting adapted from (X.-B. Jin et 

al., 2020) 
 
4. Conclusions  

Accurate weather data prediction is crucial 
to a precision agricultural IoT system's 
performance improvement. The deep learning 
method performs exceptionally well on complex 
sensor data and can learn for itself. In this work, 
the weather data were divided into separate 
periods using the breakdown into two levels 
sequentially; It simplified the nonlinear 
relationship present in raw sensor data. Multiple 
GRUs were used as sub-predictors, and their 
prediction results were combined to make a long 
as well as medium term forecasts of weather. 
The suggested model can match the demands of 
precision agriculture and has a greater prediction 
accuracy thanks to real data validation. Through 

the use of Internet of Things (IoT) technology, 
precision agricultural costs can be greatly 
reduced, farmers' familiarity with precision 
agriculture tools can be increased, and farmers' 
workloads can be lightened.. Following our 
study, long-term weather forecasts can offer 
crucial advice for organizing a good crop growth 
cycle. It can also assist farmers in managing 
their crops. For instance, an initial prediction 
and estimate of severe weather might be made in 
agriculture to lower risks and boost profitability.  

Merging deep learning methods with 
enduring big data analytics offers a significant 
opportunity to improve crop output forecasts in 
precision agriculture. A big window of 
opportunity offers itself now to seize this 
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possibility. The proposed model has a lot of 
benefits when it comes to making long-term and 
medium-term weather predictions since it uses a 
large number of GRUs as sub-predictors and 
combines the prediction outputs of these GRUs. 
To begin, it allows for the recording of trends in 
addition to daily fluctuations, annual variations, 
and residuals, all of which contribute to a more 
complete knowledge of the dynamics of the 
weather. Second, by using GRUs, the model is 
better equipped to learn from intricate sensor 
data and spot temporal correlations, resulting in 
more precise and trustworthy forecasts. Third, 
the model may include the predictions of the 
various sub-predictors to increase the overall 
accuracy of the forecast by making use of the 
talents that each individual sub-predictor has. 
More accurate weather predictions might allow 
precision agricultural technologies to improve 
crop management techniques. This is where the 
process ends up. 

It is important to note the many advantages 
offered by the integration of big data analytics 
and deep learning algorithms for crop 
production prediction in precision agriculture. 
The first benefit is that it facilitates the 
collection and analysis of massive amounts of 
agricultural data, such as weather patterns, soil 
conditions, and crop characteristics, which in 
turn increases the precision and scope of 
forecasts. Second, deep learning algorithms are 
superior to more conventional approaches 
because of their ability to efficiently capture 
complicated patterns and nonlinear correlations 
in the data. This is because of the superiority of 
deep learning algorithms. In conclusion, 
sustainable agricultural techniques help raise 
harvest yields while being gentler on the 
environment. Because of the cutting-edge nature 
of these technologies, real-time tracking and 
decision-making are now viable options. The 
ability to make timely, educated decisions on 
crop management is a huge benefit for farmers. 
In conclusion, the efficiency and longevity of 
precision agricultural systems are enhanced by 
the integration of big data analytics and deep 
learning.  
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